These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 24808545)

  • 1. Neuromorphic control of stepping pattern generation: a dynamic model with analog circuit implementation.
    Yang Z; Cameron K; Lewinger W; Webb B; Murray A
    IEEE Trans Neural Netw Learn Syst; 2012 Mar; 23(3):373-84. PubMed ID: 24808545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A neuromechanical model for the neuronal basis of curve walking in the stick insect.
    Knops S; Tóth TI; Guschlbauer C; Gruhn M; Daun-Gruhn S
    J Neurophysiol; 2013 Feb; 109(3):679-91. PubMed ID: 23136343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A neuromechanical model explaining forward and backward stepping in the stick insect.
    Tóth TI; Knops S; Daun-Gruhn S
    J Neurophysiol; 2012 Jun; 107(12):3267-80. PubMed ID: 22402652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuromorphic walking gait control.
    Still S; Hepp K; Douglas RJ
    IEEE Trans Neural Netw; 2006 Mar; 17(2):496-508. PubMed ID: 16566475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FPGA implementation of a configurable neuromorphic CPG-based locomotion controller.
    Barron-Zambrano JH; Torres-Huitzil C
    Neural Netw; 2013 Sep; 45():50-61. PubMed ID: 23631905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A neuro-mechanical model of legged locomotion: single leg control.
    Wadden T; Ekeberg O
    Biol Cybern; 1998 Aug; 79(2):161-73. PubMed ID: 9791936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg.
    Akay T; Haehn S; Schmitz J; Büschges A
    J Neurophysiol; 2004 Jul; 92(1):42-51. PubMed ID: 14999042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic drive contributing to rhythmic activation of motoneurons in the deafferented stick insect walking system.
    Büschges A; Ludwar BCh; Bucher D; Schmidt J; DiCaprio RA
    Eur J Neurosci; 2004 Apr; 19(7):1856-62. PubMed ID: 15078559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuromorphic hardware databases for exploring structure-function relationships in the brain.
    Breslin C; O'Lenskie A
    Philos Trans R Soc Lond B Biol Sci; 2001 Aug; 356(1412):1249-58. PubMed ID: 11545701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A putative neuronal network controlling the activity of the leg motoneurons of the stick insect.
    Toth TI; Daun-Gruhn S
    Neuroreport; 2011 Dec; 22(18):943-6. PubMed ID: 22089647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dominance of local sensory signals over inter-segmental effects in a motor system: experiments.
    Borgmann A; Toth TI; Gruhn M; Daun-Gruhn S; Büschges A
    Biol Cybern; 2011 Dec; 105(5-6):399-411. PubMed ID: 22290138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the gait generation principle by a simulated quadruped model with a CPG incorporating vestibular modulation.
    Fukuoka Y; Habu Y; Fukui T
    Biol Cybern; 2013 Dec; 107(6):695-710. PubMed ID: 24132783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibration signals from the FT joint can induce phase transitions in both directions in motoneuron pools of the stick insect walking system.
    Bässler U; Sauer AE; Büschges A
    J Neurobiol; 2003 Aug; 56(2):125-38. PubMed ID: 12838578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design process and tools for dynamic neuromechanical models and robot controllers.
    Szczecinski NS; Hunt AJ; Quinn RD
    Biol Cybern; 2017 Feb; 111(1):105-127. PubMed ID: 28224266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase response characteristics of model neurons determine which patterns are expressed in a ring circuit model of gait generation.
    Canavier CC; Butera RJ; Dror RO; Baxter DA; Clark JW; Byrne JH
    Biol Cybern; 1997 Dec; 77(6):367-80. PubMed ID: 9433752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Premotor interneurons in the local control of stepping motor output for the stick insect single middle leg.
    von Uckermann G; Büschges A
    J Neurophysiol; 2009 Sep; 102(3):1956-75. PubMed ID: 19605613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of stepping velocity in a single insect leg during walking.
    Gabriel JP; Büschges A
    Philos Trans A Math Phys Eng Sci; 2007 Jan; 365(1850):251-71. PubMed ID: 17148059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-layered multi-pattern CPG for adaptive locomotion of humanoid robots.
    Nassour J; Hénaff P; Benouezdou F; Cheng G
    Biol Cybern; 2014 Jun; 108(3):291-303. PubMed ID: 24570353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A survey on CPG-inspired control models and system implementation.
    Yu J; Tan M; Chen J; Zhang J
    IEEE Trans Neural Netw Learn Syst; 2014 Mar; 25(3):441-56. PubMed ID: 24807442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The roles of ascending sensory signals and top-down central control in the entrainment of a locomotor CPG.
    Codianni MG; Daun S; Rubin JE
    Biol Cybern; 2020 Dec; 114(6):533-555. PubMed ID: 33289879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.