These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 24808754)

  • 1. Micropolar continuum modelling of bi-dimensional tetrachiral lattices.
    Chen Y; Liu XN; Hu GK; Sun QP; Zheng QS
    Proc Math Phys Eng Sci; 2014 May; 470(2165):20130734. PubMed ID: 24808754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overall constitutive properties of stratified lattices with alternating chirality.
    Bacigalupo A; Badino P; Diana V; Gambarotta L
    Philos Trans A Math Phys Eng Sci; 2024 Sep; 382(2279):20230355. PubMed ID: 39129410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization.
    Goda I; Assidi M; Belouettar S; Ganghoffer JF
    J Mech Behav Biomed Mater; 2012 Dec; 16():87-108. PubMed ID: 23178480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 3D elastic micropolar model of vertebral trabecular bone from lattice homogenization of the bone microstructure.
    Goda I; Assidi M; Ganghoffer JF
    Biomech Model Mechanobiol; 2014 Jan; 13(1):53-83. PubMed ID: 23579636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scale Effects in Orthotropic Composite Assemblies as Micropolar Continua: A Comparison between Weak- and Strong-Form Finite Element Solutions.
    Leonetti L; Fantuzzi N; Trovalusci P; Tornabene F
    Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30841608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective property evaluation and analysis of three-dimensional periodic lattices and composites through Bloch-wave homogenization.
    Patil GU; Matlack KH
    J Acoust Soc Am; 2019 Mar; 145(3):1259. PubMed ID: 31067925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discrete-to-continuum modelling of weakly interacting incommensurate two-dimensional lattices.
    Español MI; Golovaty D; Wilber JP
    Proc Math Phys Eng Sci; 2018 Jan; 474(2209):20170612. PubMed ID: 29434511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Equivalent mechanical properties of biological membranes from lattice homogenization.
    Assidi M; Dos Reis F; Ganghoffer JF
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1833-45. PubMed ID: 22098882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Cross Tetrachiral Honeycomb Metamaterial with Designable Static and Dynamic Performances.
    Liu F; Shao S; Wang W; Xia R; Negahban M; Li Z
    Materials (Basel); 2024 Sep; 17(18):. PubMed ID: 39336393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wave polarization and dynamic degeneracy in a chiral elastic lattice.
    Carta G; Jones IS; Movchan NV; Movchan AB
    Proc Math Phys Eng Sci; 2019 Dec; 475(2232):20190313. PubMed ID: 31892832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of micropolar elastic multi-laminated composite and its application to bioceramic materials for bone reconstruction.
    Rodríguez-Ramos R; Espinosa-Almeyda Y; Guinovart-Sanjuán D; Camacho-Montes H; Rodríguez-Bermúdez P; Brito-Santana H; Otero JA; Sabina FJ
    Interface Focus; 2024 Jun; 14(3):20230064. PubMed ID: 39257632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel approach to estimate trabecular bone anisotropy from stress tensors.
    Hazrati Marangalou J; Ito K; van Rietbergen B
    Biomech Model Mechanobiol; 2015 Jan; 14(1):39-48. PubMed ID: 24777672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effective Mechanical Properties of Periodic Cellular Solids with Generic Bravais Lattice Symmetry via Asymptotic Homogenization.
    Rajakareyar P; ElSayed MSA; Abo El Ella H; Matida E
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Torsional Characteristics of Carbon Nanotubes: Micropolar Elasticity Models and Molecular Dynamics Simulation.
    Izadi R; Tuna M; Trovalusci P; Ghavanloo E
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33670119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wave propagation in two-dimensional periodic lattices.
    Phani AS; Woodhouse J; Fleck NA
    J Acoust Soc Am; 2006 Apr; 119(4):1995-2005. PubMed ID: 16642813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic Characterization of Hexagonal Microstructured Materials with Voids from Discrete and Continuum Models.
    Colatosti M; Shi F; Fantuzzi N; Trovalusci P
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discrete breathers in classical ferromagnetic lattices with easy-plane anisotropy.
    Khalack JM; Zolotaryuk Y; Christiansen PL
    Chaos; 2003 Jun; 13(2):683-92. PubMed ID: 12777133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orthotropic properties of cancellous bone modelled as parameterized cellular material.
    Kowalczyk P
    Comput Methods Biomech Biomed Engin; 2006 Jun; 9(3):135-47. PubMed ID: 16880164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous chiral distances for two-dimensional lattices.
    Bright MJ; Cooper AI; Kurlin VA
    Chirality; 2023 Dec; 35(12):920-936. PubMed ID: 37343226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An anatomical heart model with applications to myocardial activation and ventricular mechanics.
    Hunter PJ; Nielsen PM; Smaill BH; LeGrice IJ; Hunter IW
    Crit Rev Biomed Eng; 1992; 20(5-6):403-26. PubMed ID: 1486783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.