BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 24809224)

  • 41. Exclusion of ABCB8 and ABCB10 as cancer candidate genes in acute myeloid leukemia.
    Tang L; Bergevoet SM; Franssen LE; de Witte T; Jansen JH; Raymakers RA; van der Reijden BA
    Leukemia; 2009 May; 23(5):1000-2. PubMed ID: 19151771
    [No Abstract]   [Full Text] [Related]  

  • 42. Therapeutic Resistance in Acute Myeloid Leukemia: The Role of Non-Coding RNAs.
    Zebisch A; Hatzl S; Pichler M; Wölfler A; Sill H
    Int J Mol Sci; 2016 Dec; 17(12):. PubMed ID: 27973410
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phase I study of mitoxantrone plus etoposide with multidrug blockade by SDZ PSC-833 in relapsed or refractory acute myelogenous leukemia.
    Kornblau SM; Estey E; Madden T; Tran HT; Zhao S; Consoli U; Snell V; Sanchez-Williams G; Kantarjian H; Keating M; Newman RA; Andreeff M
    J Clin Oncol; 1997 May; 15(5):1796-802. PubMed ID: 9164187
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Relationships between multidrug resistance (MDR) and stem cell markers in human chronic myeloid leukemia cell lines.
    Marques DS; Sandrini JZ; Boyle RT; Marins LF; Trindade GS
    Leuk Res; 2010 Jun; 34(6):757-62. PubMed ID: 19969351
    [TBL] [Abstract][Full Text] [Related]  

  • 45. HSP90 inhibition depletes DNA repair proteins to sensitize acute myelogenous leukemia to nucleoside analog chemotherapeutics.
    Lai TH; Mitchell S; Wu PJ; Orwick S; Liu C; Ravikrishnan J; Woyach J; Mims A; Plunkett W; Puduvalli VK; Byrd JC; Lapalombella R; Sampath D
    Leuk Lymphoma; 2019 Sep; 60(9):2308-2311. PubMed ID: 30773117
    [No Abstract]   [Full Text] [Related]  

  • 46. Molecular response to imatinib & its correlation with mRNA expression levels of imatinib influx & efflux transporters in patients with chronic myeloid leukaemia in chronic phase.
    Malhotra H; Sharma P; Malhotra B; Bhargava S; Jasuja S; Kumar M
    Indian J Med Res; 2015 Aug; 142(2):175-82. PubMed ID: 26354214
    [TBL] [Abstract][Full Text] [Related]  

  • 47. ABCB1 and ABCG2 proteins, their functional activity and gene expression in concert with drug sensitivity of leukemia cells.
    Svirnovski AI; Shman TV; Serhiyenka TF; Savitski VP; Smolnikova VV; Fedasenka UU
    Hematology; 2009 Aug; 14(4):204-12. PubMed ID: 19635183
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Treatment of adult patients with acute myeloid leukemia (excluding acute promyelocytic leukemia)].
    Usui N
    Rinsho Ketsueki; 2014 Oct; 55(10):1808-16. PubMed ID: 25297744
    [No Abstract]   [Full Text] [Related]  

  • 49. ABC transporter expression in hematopoietic stem cells and the role in AML drug resistance.
    de Jonge-Peeters SD; Kuipers F; de Vries EG; Vellenga E
    Crit Rev Oncol Hematol; 2007 Jun; 62(3):214-26. PubMed ID: 17368038
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Strategies for overcoming p-glycoprotein-mediated drug resistance in acute myeloblastic leukaemia.
    Pallis M; Russell N
    Leukemia; 2004 Dec; 18(12):1927-30. PubMed ID: 15483678
    [No Abstract]   [Full Text] [Related]  

  • 51. Elevated HIF-1α expression of acute myelogenous leukemia stem cells in the endosteal hypoxic zone may be a cause of minimal residual disease in bone marrow after chemotherapy.
    Matsunaga T; Imataki O; Torii E; Kameda T; Shide K; Shimoda H; Kamiunten A; Sekine M; Taniguchi Y; Yamamoto S; Hidaka T; Katayose K; Kubuki Y; Dobashi H; Bandoh S; Ohnishi H; Fukai F; Shimoda K
    Leuk Res; 2012 Jun; 36(6):e122-4. PubMed ID: 22444690
    [No Abstract]   [Full Text] [Related]  

  • 52. INPP4B, a new player in the chemoresistance of AML.
    Recher C
    Blood; 2015 Apr; 125(18):2738-9. PubMed ID: 25931577
    [No Abstract]   [Full Text] [Related]  

  • 53. [State-of-the-art chemotherapy for acute myeloid leukemia].
    Miyawaki S
    Rinsho Ketsueki; 2012 Jan; 53(1):39-50. PubMed ID: 22374524
    [No Abstract]   [Full Text] [Related]  

  • 54. Instability of mRNA expression signatures of drug transporters in chronic myeloid leukemia patients resistant to imatinib.
    Gromicho M; Magalhães M; Torres F; Dinis J; Fernandes AR; Rendeiro P; Tavares P; Laires A; Rueff J; Sebastião Rodrigues A
    Oncol Rep; 2013 Feb; 29(2):741-50. PubMed ID: 23229016
    [TBL] [Abstract][Full Text] [Related]  

  • 55. MicroRNA profiling in K-562 cells under imatinib treatment: influence of miR-212 and miR-328 on ABCG2 expression.
    Turrini E; Haenisch S; Laechelt S; Diewock T; Bruhn O; Cascorbi I
    Pharmacogenet Genomics; 2012 Mar; 22(3):198-205. PubMed ID: 22241070
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Assessment of drug resistance in acute myeloid leukemia.
    Funato T; Harigae H; Abe S; Sasaki T
    Expert Rev Mol Diagn; 2004 Sep; 4(5):705-13. PubMed ID: 15347263
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanisms responsible for therapy resistance of acute myelogenous leukemia (AML).
    Köhler T; Eller J; Leiblein S; Lassner D; Helbig W; Remke H; Wagner O
    Int J Clin Pharmacol Ther; 1998 Feb; 36(2):97-8. PubMed ID: 9520156
    [No Abstract]   [Full Text] [Related]  

  • 58. Role of drug transport and metabolism in the chemoresistance of acute myeloid leukemia.
    Marin JJ; Briz O; Rodríguez-Macias G; Díez-Martín JL; Macias RI
    Blood Rev; 2016 Jan; 30(1):55-64. PubMed ID: 26321049
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Acute myeloid leukemia--major progress over four decades and glimpses into the future.
    Kantarjian H
    Am J Hematol; 2016 Jan; 91(1):131-45. PubMed ID: 26598393
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hope and hype surrounding circulating microRNA as potential next generation AML biomarkers.
    Abdelhamed S; Kurre P
    Leuk Res; 2015 Dec; 39(12):1309-11. PubMed ID: 26602021
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.