These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 24809227)

  • 1. Role of tartaric and malic acids in wine oxidation.
    Danilewicz JC
    J Agric Food Chem; 2014 Jun; 62(22):5149-55. PubMed ID: 24809227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of organic acid on cyanidin-3-O-glucoside oxidation mediated by iron in model Chinese bayberry wine.
    Zhang Z; Li J; Fan L; Duan Z
    Food Chem; 2020 Apr; 310():125980. PubMed ID: 31838371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of fluorescent lighting on the browning potential of model wine solutions containing organic acids and iron.
    Grant-Preece P; Barril C; Schmidtke LM; Clark AC
    Food Chem; 2018 Mar; 243():239-248. PubMed ID: 29146334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron(III) tartrate as a potential precursor of light-induced oxidative degradation of white wine: studies in a model wine system.
    Clark AC; Dias DA; Smith TA; Ghiggino KP; Scollary GR
    J Agric Food Chem; 2011 Apr; 59(8):3575-81. PubMed ID: 21381783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reaction Mechanisms of Metals with Hydrogen Sulfide and Thiols in Model Wine. Part 2: Iron- and Copper-Catalyzed Oxidation.
    Kreitman GY; Danilewicz JC; Jeffery DW; Elias RJ
    J Agric Food Chem; 2016 May; 64(20):4105-13. PubMed ID: 27133088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Fluorescent Lighting on Oxidation of Model Wine Solutions Containing Organic Acids and Iron.
    Grant-Preece P; Barril C; Schmidtke LM; Clark AC
    J Agric Food Chem; 2017 Mar; 65(11):2383-2393. PubMed ID: 28238266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production and Isomeric Distribution of Xanthylium Cation Pigments and Their Precursors in Wine-like Conditions: Impact of Cu(II), Fe(II), Fe(III), Mn(II), Zn(II), and Al(III).
    Guo A; Kontoudakis N; Scollary GR; Clark AC
    J Agric Food Chem; 2017 Mar; 65(11):2414-2425. PubMed ID: 28231705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct chiral resolution of malic acid in apple juice by ligand-exchange capillary electrophoresis using copper(II)-L-tartaric acid as a chiral selector.
    Kodama S; Yamamoto A; Matsunaga A; Soga T; Hayakawa K
    Electrophoresis; 2001 Sep; 22(15):3286-90. PubMed ID: 11589292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fe(III) photocatalytic reduction of Cr(VI) by low-molecular-weight organic acids with alpha-OH.
    Sun J; Mao JD; Gong H; Lan Y
    J Hazard Mater; 2009 Sep; 168(2-3):1569-74. PubMed ID: 19372002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tartaric acid-induced photoreductive dissolution of schwertmannite loaded with As(III) and the release of adsorbed As(III).
    Zhang J; Li W; Li Y; Zhou L; Lan Y
    Environ Pollut; 2019 Feb; 245():711-718. PubMed ID: 30500750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison between different types of carboxylmethylcellulose and other oenological additives used for white wine tartaric stabilization.
    Guise R; Filipe-Ribeiro L; Nascimento D; Bessa O; Nunes FM; Cosme F
    Food Chem; 2014 Aug; 156():250-7. PubMed ID: 24629965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of metal chelators on the oxidative stability of model wine.
    Kreitman GY; Cantu A; Waterhouse AL; Elias RJ
    J Agric Food Chem; 2013 Oct; 61(39):9480-7. PubMed ID: 24001152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Oxidation of tartaric acid in wine in the presence of heavy metal salts (activation of oxygen by iron)].
    RODOPULO AK
    Izv Akad Nauk SSSR Biol; 1951; 3():115-28. PubMed ID: 14840968
    [No Abstract]   [Full Text] [Related]  

  • 14. Various instrumental approaches for determination of organic acids in wines.
    Zeravik J; Fohlerova Z; Milovanovic M; Kubesa O; Zeisbergerova M; Lacina K; Petrovic A; Glatz Z; Skladal P
    Food Chem; 2016 Mar; 194():432-40. PubMed ID: 26471576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling the fenton reaction in wine.
    Elias RJ; Waterhouse AL
    J Agric Food Chem; 2010 Feb; 58(3):1699-707. PubMed ID: 20047324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enantioseparation of tartaric acid by ligand-exchange capillary electrophoresis using contactless conductivity detection.
    Knob R; Petr J; Sevčík J; Maier V
    J Sep Sci; 2013 Oct; 36(20):3426-31. PubMed ID: 23946246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand-assisted degradation of carbon tetrachloride by microscale zero-valent iron.
    Zhang X; Deng B; Guo J; Wang Y; Lan Y
    J Environ Manage; 2011 Apr; 92(4):1328-33. PubMed ID: 21236559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voltammetric determination of tartaric acid in wines by electrocatalytic oxidation on a cobalt(II)-phthalocyanine-modified electrode associated with multiway calibration.
    Lourenço AS; Nascimento RF; Silva AC; Ribeiro WF; Araujo MCU; Oliveira SCB; Nascimento VB
    Anal Chim Acta; 2018 May; 1008():29-37. PubMed ID: 29420941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wine Reduction Potentials: Are These Measured Values Really Reduction Potentials?
    Danilewicz JC; Tunbridge P; Kilmartin PA
    J Agric Food Chem; 2019 Apr; 67(15):4145-4153. PubMed ID: 30950610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Determination of organic acids in rice wine by ion-exclusion chromatography].
    Lin X; Wei W; He Z; Lin X
    Se Pu; 2014 Mar; 32(3):304-8. PubMed ID: 24984473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.