These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 24809455)

  • 1. Understanding the undelaying mechanism of HA-subtyping in the level of physic-chemical characteristics of protein.
    Ebrahimi M; Aghagolzadeh P; Shamabadi N; Tahmasebi A; Alsharifi M; Adelson DL; Hemmatzadeh F; Ebrahimie E
    PLoS One; 2014; 9(5):e96984. PubMed ID: 24809455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying discriminative amino acids within the hemagglutinin of human influenza A H5N1 virus using a decision tree.
    Wu LC; Horng JT; Huang HD; Chen WL
    IEEE Trans Inf Technol Biomed; 2008 Nov; 12(6):689-95. PubMed ID: 19000947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate classification and hemagglutinin amino acid signatures for influenza A virus host-origin association and subtyping.
    ElHefnawi M; Sherif FF
    Virology; 2014 Jan; 449():328-38. PubMed ID: 24418567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of thermostability from amino acid attributes by combination of clustering with attribute weighting: a new vista in engineering enzymes.
    Ebrahimi M; Lakizadeh A; Agha-Golzadeh P; Ebrahimie E; Ebrahimi M
    PLoS One; 2011; 6(8):e23146. PubMed ID: 21853079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Knowledge discovery and sequence-based prediction of pandemic influenza using an integrated classification and association rule mining (CBA) algorithm.
    Kargarfard F; Sami A; Ebrahimie E
    J Biomed Inform; 2015 Oct; 57():181-8. PubMed ID: 26232668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influenza HA subtypes demonstrate divergent phenotypes for cleavage activation and pH of fusion: implications for host range and adaptation.
    Galloway SE; Reed ML; Russell CJ; Steinhauer DA
    PLoS Pathog; 2013 Feb; 9(2):e1003151. PubMed ID: 23459660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential Role of Nonneutralizing IgA Antibodies in Cross-Protective Immunity against Influenza A Viruses of Multiple Hemagglutinin Subtypes.
    Okuya K; Yoshida R; Manzoor R; Saito S; Suzuki T; Sasaki M; Saito T; Kida Y; Mori-Kajihara A; Kondoh T; Sato M; Kajihara M; Miyamoto H; Ichii O; Higashi H; Takada A
    J Virol; 2020 Jun; 94(12):. PubMed ID: 32269119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influenza Virus Hemagglutinins H2, H5, H6, and H11 Are Not Targets of Pulmonary Surfactant Protein D:
    Parsons LM; An Y; Qi L; White MR; van der Woude R; Hartshorn KL; Taubenberger JK; de Vries RP; Cipollo JF
    J Virol; 2020 Feb; 94(5):. PubMed ID: 31826991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-task learning sparse group lasso: a method for quantifying antigenicity of influenza A(H1N1) virus using mutations and variations in glycosylation of Hemagglutinin.
    Li L; Chang D; Han L; Zhang X; Zaia J; Wan XF
    BMC Bioinformatics; 2020 May; 21(1):182. PubMed ID: 32393178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of the next highly pathogenic avian influenza pandemic that can cause illness in humans.
    Zhang ZW; Liu T; Zeng J; Chen YE; Yuan M; Zhang DW; Zhu F; Yuan S
    Infect Dis Poverty; 2015 Nov; 4():50. PubMed ID: 26612517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new avenue for classification and prediction of olive cultivars using supervised and unsupervised algorithms.
    Beiki AH; Saboor S; Ebrahimi M
    PLoS One; 2012; 7(9):e44164. PubMed ID: 22957050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical analysis of binding specificity of influenza viral hemagglutinin to avian and human receptors based on the fragment molecular orbital method.
    Iwata T; Fukuzawa K; Nakajima K; Aida-Hyugaji S; Mochizuki Y; Watanabe H; Tanaka S
    Comput Biol Chem; 2008 Jun; 32(3):198-211. PubMed ID: 18485828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of subtypes of the influenza A hemagglutinin (HA) gene using profile hidden Markov models.
    Gong YN; Chen GW; Shih SR
    J Microbiol Immunol Infect; 2012 Dec; 45(6):404-10. PubMed ID: 22197681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel approach for identification of influenza virus host range and zoonotic transmissible sequences by determination of host-related associative positions in viral genome segments.
    Kargarfard F; Sami A; Mohammadi-Dehcheshmeh M; Ebrahimie E
    BMC Genomics; 2016 Nov; 17(1):925. PubMed ID: 27852224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seminal quality prediction using data mining methods.
    Sahoo AJ; Kumar Y
    Technol Health Care; 2014; 22(4):531-45. PubMed ID: 24898862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic Predisposition To Acquire a Polybasic Cleavage Site for Highly Pathogenic Avian Influenza Virus Hemagglutinin.
    Nao N; Yamagishi J; Miyamoto H; Igarashi M; Manzoor R; Ohnuma A; Tsuda Y; Furuyama W; Shigeno A; Kajihara M; Kishida N; Yoshida R; Takada A
    mBio; 2017 Feb; 8(1):. PubMed ID: 28196963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of supervised machine learning algorithms in the classification of sagittal gait patterns of cerebral palsy children with spastic diplegia.
    Zhang Y; Ma Y
    Comput Biol Med; 2019 Mar; 106():33-39. PubMed ID: 30665140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free energy simulations reveal a double mutant avian H5N1 virus hemagglutinin with altered receptor binding specificity.
    Das P; Li J; Royyuru AK; Zhou R
    J Comput Chem; 2009 Aug; 30(11):1654-63. PubMed ID: 19399777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subtype- and antigenic site-specific differences in biophysical influences on evolution of influenza virus hemagglutinin.
    Stray SJ; Pittman LB
    Virol J; 2012 May; 9():91. PubMed ID: 22569196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of the hemagglutinin protein of the new pandemic H1N1 influenza virus: maintaining optimal receptor binding by compensatory substitutions.
    de Vries RP; de Vries E; Martínez-Romero C; McBride R; van Kuppeveld FJ; Rottier PJ; García-Sastre A; Paulson JC; de Haan CA
    J Virol; 2013 Dec; 87(24):13868-77. PubMed ID: 24109242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.