These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 24809626)

  • 1. In vitro development of engineered muscle using a scaffold based on the pressure-activated microsyringe (PAM) technique.
    Cei D; Malena A; de Maria C; Loro E; Sandri F; Del Moro G; Bettio S; Vergani L; Vozzi G
    J Tissue Eng Regen Med; 2017 Jan; 11(1):138-152. PubMed ID: 24809626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of tissue-engineered scaffolds microfabricated with PAM.
    Mariani M; Rosatini F; Vozzi G; Previti A; Ahluwalia A
    Tissue Eng; 2006 Mar; 12(3):547-57. PubMed ID: 16579688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. P(NIPAAM-co-HEMA) thermoresponsive hydrogels: an alternative approach for muscle cell sheet engineering.
    Villa C; Martello F; Erratico S; Tocchio A; Belicchi M; Lenardi C; Torrente Y
    J Tissue Eng Regen Med; 2017 Jan; 11(1):187-196. PubMed ID: 24799388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructure and in vitro cellular response to novel soy protein-based porous structures for tissue regeneration applications.
    Olami H; Zilberman M
    J Biomater Appl; 2016 Feb; 30(7):1004-15. PubMed ID: 26526932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrospun nanoyarn seeded with myoblasts induced from placental stem cells for the application of stress urinary incontinence sling: An in vitro study.
    Zhang K; Guo X; Li Y; Fu Q; Mo X; Nelson K; Zhao W
    Colloids Surf B Biointerfaces; 2016 Aug; 144():21-32. PubMed ID: 27060665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skeletal muscle regeneration on protein-grafted and microchannel-patterned scaffold for hypopharyngeal tissue engineering.
    Shen Z; Guo S; Ye D; Chen J; Kang C; Qiu S; Lu D; Li Q; Xu K; Lv J; Zhu Y
    Biomed Res Int; 2013; 2013():146953. PubMed ID: 24175281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of PAM scaffolds for neural tissue engineering: preliminary study on an SH-SY5Y cell line.
    Kullenberg J; Rosatini F; Vozzi G; Bianchi F; Ahluwalia A; Domenici C
    Tissue Eng Part A; 2008 Jun; 14(6):1017-23. PubMed ID: 18476808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Craniofacial muscle engineering using a 3-dimensional phosphate glass fibre construct.
    Shah R; Sinanan AC; Knowles JC; Hunt NP; Lewis MP
    Biomaterials; 2005 May; 26(13):1497-505. PubMed ID: 15522751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclic mechanical preconditioning improves engineered muscle contraction.
    Moon du G; Christ G; Stitzel JD; Atala A; Yoo JJ
    Tissue Eng Part A; 2008 Apr; 14(4):473-82. PubMed ID: 18399787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proliferation of myoblast skeletal cells on three-dimensional supermacroporous cryogels.
    Singh D; Nayak V; Kumar A
    Int J Biol Sci; 2010 Jul; 6(4):371-81. PubMed ID: 20617130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electroactive biomaterial surface engineering effects on muscle cells differentiation.
    Ribeiro S; Gomes AC; Etxebarria I; Lanceros-Méndez S; Ribeiro C
    Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():868-874. PubMed ID: 30184816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homologous muscle acellular matrix seeded with autologous myoblasts as a tissue-engineering approach to abdominal wall-defect repair.
    Conconi MT; De Coppi P; Bellini S; Zara G; Sabatti M; Marzaro M; Zanon GF; Gamba PG; Parnigotto PP; Nussdorfer GG
    Biomaterials; 2005 May; 26(15):2567-74. PubMed ID: 15585259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of nano- and micro-scale topological features on alignment of muscle cells and commitment of myogenic differentiation.
    Jana S; Leung M; Chang J; Zhang M
    Biofabrication; 2014 Sep; 6(3):035012. PubMed ID: 24876344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skeletal muscle regeneration via engineered tissue culture over electrospun nanofibrous chitosan/PVA scaffold.
    Kheradmandi M; Vasheghani-Farahani E; Ghiaseddin A; Ganji F
    J Biomed Mater Res A; 2016 Jul; 104(7):1720-7. PubMed ID: 26945909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymer functionalization as a powerful tool to improve scaffold performances.
    Rossi F; van Griensven M
    Tissue Eng Part A; 2014 Aug; 20(15-16):2043-51. PubMed ID: 24206079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrospun nanofibrous scaffolds for engineering soft connective tissues.
    James R; Toti US; Laurencin CT; Kumbar SG
    Methods Mol Biol; 2011; 726():243-58. PubMed ID: 21424454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anisotropic Materials for Skeletal-Muscle-Tissue Engineering.
    Jana S; Levengood SK; Zhang M
    Adv Mater; 2016 Dec; 28(48):10588-10612. PubMed ID: 27865007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanofiber Yarn/Hydrogel Core-Shell Scaffolds Mimicking Native Skeletal Muscle Tissue for Guiding 3D Myoblast Alignment, Elongation, and Differentiation.
    Wang L; Wu Y; Guo B; Ma PX
    ACS Nano; 2015 Sep; 9(9):9167-79. PubMed ID: 26280983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Additive manufacturing of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] scaffolds for engineered bone development.
    Mota C; Wang SY; Puppi D; Gazzarri M; Migone C; Chiellini F; Chen GQ; Chiellini E
    J Tissue Eng Regen Med; 2017 Jan; 11(1):175-186. PubMed ID: 24889107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of scaffold stiffness on myoblast differentiation.
    Levy-Mishali M; Zoldan J; Levenberg S
    Tissue Eng Part A; 2009 Apr; 15(4):935-44. PubMed ID: 18821844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.