These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 24809792)

  • 1. High-efficiency aqueous-processed hybrid solar cells with an enormous Herschel infrared contribution.
    Jin G; Wei HT; Na TY; Sun HZ; Zhang H; Yang B
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8606-12. PubMed ID: 24809792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-efficiency aqueous-solution-processed hybrid solar cells based on P3HT dots and CdTe nanocrystals.
    Yao S; Chen Z; Li F; Xu B; Song J; Yan L; Jin G; Wen S; Wang C; Yang B; Tian W
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7146-52. PubMed ID: 25781480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption.
    Li Y
    Acc Chem Res; 2012 May; 45(5):723-33. PubMed ID: 22288572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient hybrid solar cells using PbS(x)Se(1-x) quantum dots and nanorods for broad-range photon absorption and well-assembled charge transfer networks.
    Nam M; Kim S; Kim S; Kim SW; Lee K
    Nanoscale; 2013 Sep; 5(17):8202-9. PubMed ID: 23831941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture.
    Heremans P; Cheyns D; Rand BP
    Acc Chem Res; 2009 Nov; 42(11):1740-7. PubMed ID: 19751055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance.
    Liang Y; Yu L
    Acc Chem Res; 2010 Sep; 43(9):1227-36. PubMed ID: 20853907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Assembled Amphiphilic Block Copolymers/CdTe Nanocrystals for Efficient Aqueous-Processed Hybrid Solar Cells.
    Li JH; Li Y; Xu JT; Luscombe CK
    ACS Appl Mater Interfaces; 2017 May; 9(21):17942-17948. PubMed ID: 28485918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymer solar cells based on very narrow-bandgap polyplatinynes with photocurrents extended into the near-infrared region.
    Wang XZ; Wong WY; Cheung KY; Fung MK; Djurisić AB; Chan WK
    Dalton Trans; 2008 Oct; (40):5484-94. PubMed ID: 19082032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible silver nanowire meshes for high-efficiency microtextured organic-silicon hybrid photovoltaics.
    Chen TG; Huang BY; Liu HW; Huang YY; Pan HT; Meng HF; Yu P
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):6857-64. PubMed ID: 23167527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon quantum dots as novel sensitizers for photoelectrochemical solar hydrogen generation and their size-dependent effect.
    Yu X; Liu R; Zhang G; Cao H
    Nanotechnology; 2013 Aug; 24(33):335401. PubMed ID: 23892324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Green-solvent-processed hybrid solar cells based on donor-acceptor conjugated polyelectrolyte.
    Yao S; Liu L; Jiang S; Han W; Liu Y; Ma W; Liu Y; Cui T; Tian W
    RSC Adv; 2018 Nov; 8(67):38591-38597. PubMed ID: 35559096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution-processed, nanostructured hybrid solar cells with broad spectral sensitivity and stability.
    Zhou R; Zheng Y; Qian L; Yang Y; Holloway PH; Xue J
    Nanoscale; 2012 Jun; 4(11):3507-14. PubMed ID: 22543410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and synthesis of molecular donors for solution-processed high-efficiency organic solar cells.
    Coughlin JE; Henson ZB; Welch GC; Bazan GC
    Acc Chem Res; 2014 Jan; 47(1):257-70. PubMed ID: 23984626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of local and global structural order on the performance of perylene diimide excimeric solar cells.
    Ye T; Singh R; Butt HJ; Floudas G; Keivanidis PE
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11844-57. PubMed ID: 24164505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning the absorption, charge transport properties, and solar cell efficiency with the number of thienyl rings in platinum-containing poly(aryleneethynylene)s.
    Wong WY; Wang XZ; He Z; Chan KK; Djurisić AB; Cheung KY; Yip CT; Ng AM; Xi YY; Mak CS; Chan WK
    J Am Chem Soc; 2007 Nov; 129(46):14372-80. PubMed ID: 17967015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organometallic photovoltaics: a new and versatile approach for harvesting solar energy using conjugated polymetallaynes.
    Wong WY; Ho CL
    Acc Chem Res; 2010 Sep; 43(9):1246-56. PubMed ID: 20608673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-infrared azadipyrromethenes as electron donor for efficient planar heterojunction organic solar cells.
    Leblebici SY; Catane L; Barclay DE; Olson T; Chen TL; Ma B
    ACS Appl Mater Interfaces; 2011 Nov; 3(11):4469-74. PubMed ID: 21999165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-bandgap poly(thiophene-phenylene-thiophene) derivatives with broaden absorption spectra for use in high-performance bulk-heterojunction polymer solar cells.
    Chen CP; Chan SH; Chao TC; Ting C; Ko BT
    J Am Chem Soc; 2008 Sep; 130(38):12828-33. PubMed ID: 18759400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient polymer solar cells based on poly(3-hexylthiophene) and indene-C₆₀ bisadduct fabricated with non-halogenated solvents.
    Guo X; Zhang M; Cui C; Hou J; Li Y
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8190-8. PubMed ID: 24813668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in sensitized mesoscopic solar cells.
    Grätzel M
    Acc Chem Res; 2009 Nov; 42(11):1788-98. PubMed ID: 19715294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.