BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 24809833)

  • 21. Thiol-modifying phenylarsine oxide inhibits guanine nucleotide binding of Rho but not of Rac GTPases.
    Gerhard R; John H; Aktories K; Just I
    Mol Pharmacol; 2003 Jun; 63(6):1349-55. PubMed ID: 12761345
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanotransducers in cellular redox signaling: modification of thiols by reactive oxygen and nitrogen species.
    Cooper CE; Patel RP; Brookes PS; Darley-Usmar VM
    Trends Biochem Sci; 2002 Oct; 27(10):489-92. PubMed ID: 12368076
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of amino acids 22-27 of Rho-subfamily GTPases on glucosylation by the large clostridial cytotoxins TcsL-1522, TcdB-1470 and TcdB-8864.
    Müller S; von Eichel-Streiber C; Moos M
    Eur J Biochem; 1999 Dec; 266(3):1073-80. PubMed ID: 10583404
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biophysical and proteomic characterization strategies for cysteine modifications in Ras GTPases.
    Hobbs GA; Gunawardena HP; Campbell SL
    Methods Mol Biol; 2014; 1120():75-96. PubMed ID: 24470020
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Redox-dependent downregulation of Rho by Rac.
    Nimnual AS; Taylor LJ; Bar-Sagi D
    Nat Cell Biol; 2003 Mar; 5(3):236-41. PubMed ID: 12598902
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The hematopoiesis-specific GTP-binding protein RhoH is GTPase deficient and modulates activities of other Rho GTPases by an inhibitory function.
    Li X; Bu X; Lu B; Avraham H; Flavell RA; Lim B
    Mol Cell Biol; 2002 Feb; 22(4):1158-71. PubMed ID: 11809807
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of innate immunity by Rho GTPases.
    Bokoch GM
    Trends Cell Biol; 2005 Mar; 15(3):163-71. PubMed ID: 15752980
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intracellular redox regulation by the family of small GTPases.
    Finkel T
    Antioxid Redox Signal; 2006; 8(9-10):1857-63. PubMed ID: 16987038
    [TBL] [Abstract][Full Text] [Related]  

  • 29. HIF-1alpha mRNA and protein upregulation involves Rho GTPase expression during hypoxia in renal cell carcinoma.
    Turcotte S; Desrosiers RR; Béliveau R
    J Cell Sci; 2003 Jun; 116(Pt 11):2247-60. PubMed ID: 12697836
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [A brief overview of the small Rho GTPases].
    Primeau M; Lamarche-Vane N
    Med Sci (Paris); 2008 Feb; 24(2):157-62. PubMed ID: 18272077
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rho Family GTPase modification and dependence on CAAX motif-signaled posttranslational modification.
    Roberts PJ; Mitin N; Keller PJ; Chenette EJ; Madigan JP; Currin RO; Cox AD; Wilson O; Kirschmeier P; Der CJ
    J Biol Chem; 2008 Sep; 283(37):25150-25163. PubMed ID: 18614539
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of endocytic traffic by rho family GTPases.
    Ellis S; Mellor H
    Trends Cell Biol; 2000 Mar; 10(3):85-8. PubMed ID: 10675900
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel Rho GTPase-activating-protein interacts with Gem, a member of the Ras superfamily of GTPases.
    Aresta S; de Tand-Heim MF; Béranger F; de Gunzburg J
    Biochem J; 2002 Oct; 367(Pt 1):57-65. PubMed ID: 12093360
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biochemical characterization of the Yersinia YopT protease: cleavage site and recognition elements in Rho GTPases.
    Shao F; Vacratsis PO; Bao Z; Bowers KE; Fierke CA; Dixon JE
    Proc Natl Acad Sci U S A; 2003 Feb; 100(3):904-9. PubMed ID: 12538863
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plant redox proteomics.
    Navrot N; Finnie C; Svensson B; Hägglund P
    J Proteomics; 2011 Aug; 74(8):1450-62. PubMed ID: 21406256
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural basis for the selective activation of Rho GTPases by Dbl exchange factors.
    Snyder JT; Worthylake DK; Rossman KL; Betts L; Pruitt WM; Siderovski DP; Der CJ; Sondek J
    Nat Struct Biol; 2002 Jun; 9(6):468-75. PubMed ID: 12006984
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CNF1 exploits the ubiquitin-proteasome machinery to restrict Rho GTPase activation for bacterial host cell invasion.
    Doye A; Mettouchi A; Bossis G; Clément R; Buisson-Touati C; Flatau G; Gagnoux L; Piechaczyk M; Boquet P; Lemichez E
    Cell; 2002 Nov; 111(4):553-64. PubMed ID: 12437928
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modulation of Rho and cytoskeletal protein attachment to membranes by a prenylcysteine analog.
    Desrosiers RR; Gauthier F; Lanthier J; Béliveau R
    J Biol Chem; 2000 May; 275(20):14949-57. PubMed ID: 10809740
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rac and Rho play opposing roles in the regulation of hypoxia/reoxygenation-induced permeability changes in pulmonary artery endothelial cells.
    Wojciak-Stothard B; Tsang LY; Haworth SG
    Am J Physiol Lung Cell Mol Physiol; 2005 Apr; 288(4):L749-60. PubMed ID: 15591411
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The redox regulation of thiol dependent signaling pathways in cancer.
    Giles GI
    Curr Pharm Des; 2006; 12(34):4427-43. PubMed ID: 17168752
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.