These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
343 related articles for article (PubMed ID: 24810431)
1. Survival analysis and regression models. George B; Seals S; Aban I J Nucl Cardiol; 2014 Aug; 21(4):686-94. PubMed ID: 24810431 [TBL] [Abstract][Full Text] [Related]
2. Spline-based accelerated failure time model. Pang M; Platt RW; Schuster T; Abrahamowicz M Stat Med; 2021 Jan; 40(2):481-497. PubMed ID: 33105513 [TBL] [Abstract][Full Text] [Related]
3. Breast Cancer Survival Analysis: Applying the Generalized Gamma Distribution under Different Conditions of the Proportional Hazards and Accelerated Failure Time Assumptions. Abadi A; Amanpour F; Bajdik C; Yavari P Int J Prev Med; 2012 Sep; 3(9):644-51. PubMed ID: 23024854 [TBL] [Abstract][Full Text] [Related]
4. Flexible parametric accelerated failure time model. Su S J Biopharm Stat; 2021 Sep; 31(5):650-667. PubMed ID: 34550051 [TBL] [Abstract][Full Text] [Related]
6. Comparing proportional hazards and accelerated failure time models for survival analysis. Orbe J; Ferreira E; Núñez-Antón V Stat Med; 2002 Nov; 21(22):3493-510. PubMed ID: 12407686 [TBL] [Abstract][Full Text] [Related]
7. On semiparametric accelerated failure time models with time-varying covariates: A maximum penalised likelihood estimation. Ma D; Ma J; Graham PL Stat Med; 2023 Dec; 42(30):5577-5595. PubMed ID: 37845791 [TBL] [Abstract][Full Text] [Related]
8. Survival analysis: A primer for the clinician scientists. Rai S; Mishra P; Ghoshal UC Indian J Gastroenterol; 2021 Oct; 40(5):541-549. PubMed ID: 35006489 [TBL] [Abstract][Full Text] [Related]
9. An Overview of Introductory and Advanced Survival Analysis Methods in Clinical Applications: Where Have we Come so far? Beis G; Iliopoulos A; Papasotiriou I Anticancer Res; 2024 Feb; 44(2):471-487. PubMed ID: 38307572 [TBL] [Abstract][Full Text] [Related]
10. Biostatistics Series Module 9: Survival Analysis. Hazra A; Gogtay N Indian J Dermatol; 2017; 62(3):251-257. PubMed ID: 28584366 [TBL] [Abstract][Full Text] [Related]
11. Practical application of cure mixture model for long-term censored survivor data from a withdrawal clinical trial of patients with major depressive disorder. Arano I; Sugimoto T; Hamasaki T; Ohno Y BMC Med Res Methodol; 2010 Apr; 10():33. PubMed ID: 20412598 [TBL] [Abstract][Full Text] [Related]
12. A win ratio approach for comparing crossing survival curves in clinical trials. Zheng S; Wang D; Qiu J; Chen T; Gamalo M J Biopharm Stat; 2023 Jul; 33(4):488-501. PubMed ID: 36749067 [TBL] [Abstract][Full Text] [Related]
13. A censored quantile regression approach for the analysis of time to event data. Xue X; Xie X; Strickler HD Stat Methods Med Res; 2018 Mar; 27(3):955-965. PubMed ID: 27166408 [TBL] [Abstract][Full Text] [Related]
14. A new semi-supervised learning model combined with Cox and SP-AFT models in cancer survival analysis. Chai H; Li ZN; Meng DY; Xia LY; Liang Y Sci Rep; 2017 Oct; 7(1):13053. PubMed ID: 29026100 [TBL] [Abstract][Full Text] [Related]
15. Accelerated failure time modeling via nonparametric mixtures. Seo B; Kang S Biometrics; 2023 Mar; 79(1):165-177. PubMed ID: 34480750 [TBL] [Abstract][Full Text] [Related]
16. A flexible parametric accelerated failure time model and the extension to time-dependent acceleration factors. Crowther MJ; Royston P; Clements M Biostatistics; 2023 Jul; 24(3):811-831. PubMed ID: 35639824 [TBL] [Abstract][Full Text] [Related]
17. Logistic-AFT location-scale mixture regression models with nonsusceptibility for left-truncated and general interval-censored data. Chen CH; Tsay YC; Wu YC; Horng CF Stat Med; 2013 Oct; 32(24):4285-305. PubMed ID: 23661280 [TBL] [Abstract][Full Text] [Related]
18. Testing the proportional hazards assumption in cox regression and dealing with possible non-proportionality in total joint arthroplasty research: methodological perspectives and review. Kuitunen I; Ponkilainen VT; Uimonen MM; Eskelinen A; Reito A BMC Musculoskelet Disord; 2021 May; 22(1):489. PubMed ID: 34049528 [TBL] [Abstract][Full Text] [Related]
19. Deep Neural Network-Based Accelerated Failure Time Models Using Rank Loss. Kim G; Park J; Kang S Stat Med; 2024 Oct; ():. PubMed ID: 39394866 [TBL] [Abstract][Full Text] [Related]
20. Are non-constant rates and non-proportional treatment effects accounted for in the design and analysis of randomised controlled trials? A review of current practice. Jachno K; Heritier S; Wolfe R BMC Med Res Methodol; 2019 May; 19(1):103. PubMed ID: 31096924 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]