These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 24810463)

  • 41. Structural characterization of a p-acetylphenylalanyl aminoacyl-tRNA synthetase.
    Turner JM; Graziano J; Spraggon G; Schultz PG
    J Am Chem Soc; 2005 Nov; 127(43):14976-7. PubMed ID: 16248607
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structure, function and evolution of seryl-tRNA synthetases: implications for the evolution of aminoacyl-tRNA synthetases and the genetic code.
    Härtlein M; Cusack S
    J Mol Evol; 1995 May; 40(5):519-30. PubMed ID: 7540217
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Domain-domain communication in aminoacyl-tRNA synthetases.
    Alexander RW; Schimmel P
    Prog Nucleic Acid Res Mol Biol; 2001; 69():317-49. PubMed ID: 11550797
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Conformational and chemical selection by a
    Danhart EM; Bakhtina M; Cantara WA; Kuzmishin AB; Ma X; Sanford BL; Vargas-Rodriguez O; Košutić M; Goto Y; Suga H; Nakanishi K; Micura R; Foster MP; Musier-Forsyth K
    Proc Natl Acad Sci U S A; 2017 Aug; 114(33):E6774-E6783. PubMed ID: 28768811
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Amino acid binding by the class I aminoacyl-tRNA synthetases: role for a conserved proline in the signature sequence.
    Burbaum JJ; Schimmel P
    Protein Sci; 1992 May; 1(5):575-81. PubMed ID: 1304356
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Aminoacyl tRNA synthetase complex interacting multifunctional protein 1 simultaneously binds Glutamyl-Prolyl-tRNA synthetase and scaffold protein aminoacyl tRNA synthetase complex interacting multifunctional protein 3 of the multi-tRNA synthetase complex.
    Schwarz MA; Lee DD; Bartlett S
    Int J Biochem Cell Biol; 2018 Jun; 99():197-202. PubMed ID: 29679766
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Novel Aminoacyl-tRNA Synthetase Appended Domain Can Supply the Core Synthetase with Its Amino Acid Substrate.
    Muraski M; Nilsson E; Weekley B; Sharma SB; Alexander RW
    Genes (Basel); 2020 Nov; 11(11):. PubMed ID: 33171705
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sequence, structural and evolutionary relationships between class 2 aminoacyl-tRNA synthetases.
    Cusack S; Härtlein M; Leberman R
    Nucleic Acids Res; 1991 Jul; 19(13):3489-98. PubMed ID: 1852601
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Energy cost of translational proofreading in vivo. The aminoacylation of transfer RNA in Escherichia coli.
    Jakubowski H
    Ann N Y Acad Sci; 1994 Nov; 745():4-20. PubMed ID: 7530434
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Functional guanine-arginine interaction between tRNAPro and prolyl-tRNA synthetase that couples binding and catalysis.
    Burke B; An S; Musier-Forsyth K
    Biochim Biophys Acta; 2008 Sep; 1784(9):1222-5. PubMed ID: 18513497
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Substrate selection by aminoacyl-tRNA synthetases.
    Ibba M; Thomann HU; Hong KW; Sherman JM; Weygand-Durasevic I; Sever S; Stange-Thomann N; Praetorius M; Söll D
    Nucleic Acids Symp Ser; 1995; (33):40-2. PubMed ID: 8643392
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Interrelation between transfer RNA and amino-acid-activating sites of methionyl transfer RNA synthetase from Escherichia coli.
    Jacques Y; Blanquet S
    Eur J Biochem; 1977 Oct; 79(2):433-41. PubMed ID: 336359
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Crowder-Induced Conformational Ensemble Shift in Escherichia coli Prolyl-tRNA Synthetase.
    Adams LM; Andrews RJ; Hu QH; Schmit HL; Hati S; Bhattacharyya S
    Biophys J; 2019 Oct; 117(7):1269-1284. PubMed ID: 31542226
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Metal-binding site in a class I tRNA synthetase localized to a cysteine cluster inserted into nucleotide-binding fold.
    Landro JA; Schimmel P
    Proc Natl Acad Sci U S A; 1993 Mar; 90(6):2261-5. PubMed ID: 8460131
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A study of communication pathways in methionyl- tRNA synthetase by molecular dynamics simulations and structure network analysis.
    Ghosh A; Vishveshwara S
    Proc Natl Acad Sci U S A; 2007 Oct; 104(40):15711-6. PubMed ID: 17898174
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Domain-domain communication for tRNA aminoacylation: the importance of covalent connectivity.
    Zhang CM; Hou YM
    Biochemistry; 2005 May; 44(19):7240-9. PubMed ID: 15882062
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sequence comparisons in the aminoacyl-tRNA synthetases with emphasis on regions of likely homology with sequences in the Rossmann fold in the methionyl and tyrosyl enzymes.
    Walker EJ; Jeffrey PD
    Protein Seq Data Anal; 1988 Feb; 1(3):187-93. PubMed ID: 3283733
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Aminoacyl-tRNA synthetases from an extreme thermophile, Thermus thermophilus HB8.
    Kohda D; Hara M; Yokoyama S; Miyazawa T
    Nucleic Acids Symp Ser; 1983; (12):153-4. PubMed ID: 6664850
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Crystallization and preliminary X-ray diffraction analysis of Thermus thermophilus prolyl-tRNA synthetase.
    Yaremchuk A; Cusack S; Tukalo M
    Acta Crystallogr D Biol Crystallogr; 2000 Feb; 56(Pt 2):195-6. PubMed ID: 10666603
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural control of caspase-generated glutamyl-tRNA synthetase by appended noncatalytic WHEP domains.
    Halawani D; Gogonea V; DiDonato JA; Pipich V; Yao P; China A; Topbas C; Vasu K; Arif A; Hazen SL; Fox PL
    J Biol Chem; 2018 Jun; 293(23):8843-8860. PubMed ID: 29643180
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.