BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 24810767)

  • 1. K+ uptake in plant roots. The systems involved, their regulation and parallels in other organisms.
    Nieves-Cordones M; Alemán F; Martínez V; Rubio F
    J Plant Physiol; 2014 May; 171(9):688-95. PubMed ID: 24810767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The CBL-Interacting Protein Kinase CIPK23 Regulates HAK5-Mediated High-Affinity K+ Uptake in Arabidopsis Roots.
    Ragel P; Ródenas R; García-Martín E; Andrés Z; Villalta I; Nieves-Cordones M; Rivero RM; Martínez V; Pardo JM; Quintero FJ; Rubio F
    Plant Physiol; 2015 Dec; 169(4):2863-73. PubMed ID: 26474642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The potassium transporter AtHAK5 functions in K(+) deprivation-induced high-affinity K(+) uptake and AKT1 K(+) channel contribution to K(+) uptake kinetics in Arabidopsis roots.
    Gierth M; Mäser P; Schroeder JI
    Plant Physiol; 2005 Mar; 137(3):1105-14. PubMed ID: 15734909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Root K(+) acquisition in plants: the Arabidopsis thaliana model.
    Alemán F; Nieves-Cordones M; Martínez V; Rubio F
    Plant Cell Physiol; 2011 Sep; 52(9):1603-12. PubMed ID: 21771865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms and physiological roles of K+ efflux from root cells.
    Demidchik V
    J Plant Physiol; 2014 May; 171(9):696-707. PubMed ID: 24685330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. K(+) channel profile and electrical properties of Arabidopsis root hairs.
    Ivashikina N; Becker D; Ache P; Meyerhoff O; Felle HH; Hedrich R
    FEBS Lett; 2001 Nov; 508(3):463-9. PubMed ID: 11728473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Ca(2+)-sensitive system mediates low-affinity K(+) uptake in the absence of AKT1 in Arabidopsis plants.
    Caballero F; Botella MA; Rubio L; Fernández JA; Martínez V; Rubio F
    Plant Cell Physiol; 2012 Dec; 53(12):2047-59. PubMed ID: 23054389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A low K+ signal is required for functional high-affinity K+ uptake through HAK5 transporters.
    Rubio F; Fon M; Ródenas R; Nieves-Cordones M; Alemán F; Rivero RM; Martínez V
    Physiol Plant; 2014 Nov; 152(3):558-70. PubMed ID: 24716623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison between Arabidopsis and Rice for Main Pathways of K(+) and Na(+) Uptake by Roots.
    Nieves-Cordones M; Martínez V; Benito B; Rubio F
    Front Plant Sci; 2016; 7():992. PubMed ID: 27458473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potassium uptake supporting plant growth in the absence of AKT1 channel activity: Inhibition by ammonium and stimulation by sodium.
    Spalding EP; Hirsch RE; Lewis DR; Qi Z; Sussman MR; Lewis BD
    J Gen Physiol; 1999 Jun; 113(6):909-18. PubMed ID: 10352038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heteromeric AtKC1{middle dot}AKT1 channels in Arabidopsis roots facilitate growth under K+-limiting conditions.
    Geiger D; Becker D; Vosloh D; Gambale F; Palme K; Rehers M; Anschuetz U; Dreyer I; Kudla J; Hedrich R
    J Biol Chem; 2009 Aug; 284(32):21288-95. PubMed ID: 19509299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-affinity K(+) transport in Arabidopsis: AtHAK5 and AKT1 are vital for seedling establishment and postgermination growth under low-potassium conditions.
    Pyo YJ; Gierth M; Schroeder JI; Cho MH
    Plant Physiol; 2010 Jun; 153(2):863-75. PubMed ID: 20413648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MYB77 regulates high-affinity potassium uptake by promoting expression of HAK5.
    Feng CZ; Luo YX; Wang PD; Gilliham M; Long Y
    New Phytol; 2021 Oct; 232(1):176-189. PubMed ID: 34192362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arabidopsis K+ transporter HAK5-mediated high-affinity root K+ uptake is regulated by protein kinases CIPK1 and CIPK9.
    Lara A; Ródenas R; Andrés Z; Martínez V; Quintero FJ; Nieves-Cordones M; Botella MA; Rubio F
    J Exp Bot; 2020 Aug; 71(16):5053-5060. PubMed ID: 32484219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potassium Transporter KUP7 Is Involved in K(+) Acquisition and Translocation in Arabidopsis Root under K(+)-Limited Conditions.
    Han M; Wu W; Wu WH; Wang Y
    Mol Plant; 2016 Mar; 9(3):437-446. PubMed ID: 26851373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of the rice AKT1 potassium channel affects potassium nutrition and rice drought tolerance.
    Ahmad I; Mian A; Maathuis FJ
    J Exp Bot; 2016 Apr; 67(9):2689-98. PubMed ID: 26969743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A role for the AKT1 potassium channel in plant nutrition.
    Hirsch RE; Lewis BD; Spalding EP; Sussman MR
    Science; 1998 May; 280(5365):918-21. PubMed ID: 9572739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potassium channel alpha-subunit AtKC1 negatively regulates AKT1-mediated K(+) uptake in Arabidopsis roots under low-K(+) stress.
    Wang Y; He L; Li HD; Xu J; Wu WH
    Cell Res; 2010 Jul; 20(7):826-37. PubMed ID: 20514083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complexity of potassium acquisition: how much flows through channels?
    Coskun D; Kronzucker HJ
    Plant Signal Behav; 2013 Jul; 8(7):e24799. PubMed ID: 23656868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influx and accumulation of Cs(+) by the akt1 mutant of Arabidopsis thaliana (L.) Heynh. lacking a dominant K(+) transport system.
    Broadley MR; Escobar-Gutiérrez AJ; Bowen HC; Willey NJ; White PJ
    J Exp Bot; 2001 Apr; 52(357):839-44. PubMed ID: 11413220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.