These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 24811160)

  • 1. Near-infrared light-responsive nanomaterials in cancer therapeutics.
    Shanmugam V; Selvakumar S; Yeh CS
    Chem Soc Rev; 2014 Sep; 43(17):6254-87. PubMed ID: 24811160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-infrared light-responsive nanomaterials for cancer theranostics.
    Kim H; Chung K; Lee S; Kim DH; Lee H
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2016; 8(1):23-45. PubMed ID: 25903643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable nanostructures as photothermal theranostic agents.
    Young JK; Figueroa ER; Drezek RA
    Ann Biomed Eng; 2012 Feb; 40(2):438-59. PubMed ID: 22134466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Au-nanomaterials as a superior choice for near-infrared photothermal therapy.
    Jabeen F; Najam-ul-Haq M; Javeed R; Huck CW; Bonn GK
    Molecules; 2014 Dec; 19(12):20580-93. PubMed ID: 25501919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold nanomaterials conjugated with indocyanine green for dual-modality photodynamic and photothermal therapy.
    Kuo WS; Chang YT; Cho KC; Chiu KC; Lien CH; Yeh CS; Chen SJ
    Biomaterials; 2012 Apr; 33(11):3270-8. PubMed ID: 22289264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-Infrared-Activated Nanocalorifiers in Microcapsules: Vapor Bubble Generation for In Vivo Enhanced Cancer Therapy.
    Shao J; Xuan M; Dai L; Si T; Li J; He Q
    Angew Chem Int Ed Engl; 2015 Oct; 54(43):12782-7. PubMed ID: 26306782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EphrinA I-targeted nanoshells for photothermal ablation of prostate cancer cells.
    Gobin AM; Moon JJ; West JL
    Int J Nanomedicine; 2008; 3(3):351-8. PubMed ID: 18990944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Au@Pt nanostructures: a novel photothermal conversion agent for cancer therapy.
    Tang J; Jiang X; Wang L; Zhang H; Hu Z; Liu Y; Wu X; Chen C
    Nanoscale; 2014 Apr; 6(7):3670-8. PubMed ID: 24566522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multifunctional PEG-GO/CuS nanocomposites for near-infrared chemo-photothermal therapy.
    Bai J; Liu Y; Jiang X
    Biomaterials; 2014 Jul; 35(22):5805-13. PubMed ID: 24767788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy.
    Robinson JT; Tabakman SM; Liang Y; Wang H; Casalongue HS; Vinh D; Dai H
    J Am Chem Soc; 2011 May; 133(17):6825-31. PubMed ID: 21476500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy.
    Liu J; Dong J; Zhang T; Peng Q
    J Control Release; 2018 Sep; 286():64-73. PubMed ID: 30031155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting chemophotothermal therapy of hepatoma by gold nanorods/graphene oxide core/shell nanocomposites.
    Xu C; Yang D; Mei L; Li Q; Zhu H; Wang T
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):12911-20. PubMed ID: 24274670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power.
    Yang K; Wan J; Zhang S; Tian B; Zhang Y; Liu Z
    Biomaterials; 2012 Mar; 33(7):2206-14. PubMed ID: 22169821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy.
    Tsai MF; Chang SH; Cheng FY; Shanmugam V; Cheng YS; Su CH; Yeh CS
    ACS Nano; 2013 Jun; 7(6):5330-42. PubMed ID: 23651267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in functional nanostructures as cancer photothermal therapy.
    Hussein EA; Zagho MM; Nasrallah GK; Elzatahry AA
    Int J Nanomedicine; 2018; 13():2897-2906. PubMed ID: 29844672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IR780 based nanomaterials for cancer imaging and photothermal, photodynamic and combinatorial therapies.
    Alves CG; Lima-Sousa R; de Melo-Diogo D; Louro RO; Correia IJ
    Int J Pharm; 2018 May; 542(1-2):164-175. PubMed ID: 29549013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photothermal cancer therapy and imaging based on gold nanorods.
    Choi WI; Sahu A; Kim YH; Tae G
    Ann Biomed Eng; 2012 Feb; 40(2):534-46. PubMed ID: 21887589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-infrared light-mediated nanoplatforms for cancer thermo-chemotherapy and optical imaging.
    Zhang Z; Wang J; Chen C
    Adv Mater; 2013 Jul; 25(28):3869-80. PubMed ID: 24048973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein-assisted fabrication of nano-reduced graphene oxide for combined in vivo photoacoustic imaging and photothermal therapy.
    Sheng Z; Song L; Zheng J; Hu D; He M; Zheng M; Gao G; Gong P; Zhang P; Ma Y; Cai L
    Biomaterials; 2013 Jul; 34(21):5236-43. PubMed ID: 23602365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of oligonucleotide-gated silica shell-coated Fe₃O₄-Au core-shell nanotrisoctahedra for magnetically targeted and near-infrared light-responsive theranostic platform.
    Li WP; Liao PY; Su CH; Yeh CS
    J Am Chem Soc; 2014 Jul; 136(28):10062-75. PubMed ID: 24953310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.