These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
348 related articles for article (PubMed ID: 24811160)
21. Recent Developments of Phototherapy Based on Graphene Family Nanomaterials. Zhang B; Wang Y; Liu J; Zhai G Curr Med Chem; 2017; 24(3):268-291. PubMed ID: 27774874 [TBL] [Abstract][Full Text] [Related]
22. Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods. Huang YF; Sefah K; Bamrungsap S; Chang HT; Tan W Langmuir; 2008 Oct; 24(20):11860-5. PubMed ID: 18817428 [TBL] [Abstract][Full Text] [Related]
23. Multifunctional core-shell nanoplatforms (gold@graphene oxide) with mediated NIR thermal therapy to promote miRNA delivery. Assali A; Akhavan O; Adeli M; Razzazan S; Dinarvand R; Zanganeh S; Soleimani M; Dinarvand M; Atyabi F Nanomedicine; 2018 Aug; 14(6):1891-1903. PubMed ID: 29885900 [TBL] [Abstract][Full Text] [Related]
24. A review of optical imaging and therapy using nanosized graphene and graphene oxide. Li JL; Tang B; Yuan B; Sun L; Wang XG Biomaterials; 2013 Dec; 34(37):9519-34. PubMed ID: 24034502 [TBL] [Abstract][Full Text] [Related]
25. Near-Infrared-Light-Activatable Nanomaterial-Mediated Phototheranostic Nanomedicines: An Emerging Paradigm for Cancer Treatment. Vankayala R; Hwang KC Adv Mater; 2018 Jun; 30(23):e1706320. PubMed ID: 29577458 [TBL] [Abstract][Full Text] [Related]
26. Controlled-release system of single-stranded DNA triggered by the photothermal effect of gold nanorods and its in vivo application. Yamashita S; Fukushima H; Akiyama Y; Niidome Y; Mori T; Katayama Y; Niidome T Bioorg Med Chem; 2011 Apr; 19(7):2130-5. PubMed ID: 21421321 [TBL] [Abstract][Full Text] [Related]
27. Plasmonic caged gold nanorods for near-infrared light controlled drug delivery. Xiong W; Mazid R; Yap LW; Li X; Cheng W Nanoscale; 2014 Nov; 6(23):14388-93. PubMed ID: 25333569 [TBL] [Abstract][Full Text] [Related]
28. Multifunctional hetero-nanostructures of hydroxyl-rich polycation wrapped cellulose-gold hybrids for combined cancer therapy. Hu Y; Wen C; Song L; Zhao N; Xu FJ J Control Release; 2017 Jun; 255():154-163. PubMed ID: 28385675 [TBL] [Abstract][Full Text] [Related]
29. CMCTS stabilized Fe3O4 particles with extremely low toxicity as highly efficient near-infrared photothermal agents for in vivo tumor ablation. Shen S; Kong F; Guo X; Wu L; Shen H; Xie M; Wang X; Jin Y; Ge Y Nanoscale; 2013 Sep; 5(17):8056-66. PubMed ID: 23873020 [TBL] [Abstract][Full Text] [Related]
30. Near infrared laser-tissue welding using nanoshells as an exogenous absorber. Gobin AM; O'Neal DP; Watkins DM; Halas NJ; Drezek RA; West JL Lasers Surg Med; 2005 Aug; 37(2):123-9. PubMed ID: 16047329 [TBL] [Abstract][Full Text] [Related]
31. Chelator-free (64)Cu-integrated gold nanomaterials for positron emission tomography imaging guided photothermal cancer therapy. Sun X; Huang X; Yan X; Wang Y; Guo J; Jacobson O; Liu D; Szajek LP; Zhu W; Niu G; Kiesewetter DO; Sun S; Chen X ACS Nano; 2014 Aug; 8(8):8438-46. PubMed ID: 25019252 [TBL] [Abstract][Full Text] [Related]
32. Near-infrared Light Responsive Polymeric Nanocomposites for Cancer Therapy. Min C; Zou X; Yang Q; Liao L; Zhou G; Liu L Curr Top Med Chem; 2017; 17(16):1805-1814. PubMed ID: 27875978 [TBL] [Abstract][Full Text] [Related]
33. A multi-stimuli responsive gold nanocage-hyaluronic platform for targeted photothermal and chemotherapy. Wang Z; Chen Z; Liu Z; Shi P; Dong K; Ju E; Ren J; Qu X Biomaterials; 2014 Dec; 35(36):9678-88. PubMed ID: 25176062 [TBL] [Abstract][Full Text] [Related]
34. Near-infrared Light Activatable Multimodal Gold Nanostructures Platform: An Emerging Paradigm for Cancer Therapy. Jiang Y; Fei W; Cen X; Tang Y; Liang X Curr Cancer Drug Targets; 2015; 15(5):406-22. PubMed ID: 25847011 [TBL] [Abstract][Full Text] [Related]
35. High specific detection and near-infrared photothermal therapy of lung cancer cells with high SERS active aptamer-silver-gold shell-core nanostructures. Wu P; Gao Y; Lu Y; Zhang H; Cai C Analyst; 2013 Nov; 138(21):6501-10. PubMed ID: 24040647 [TBL] [Abstract][Full Text] [Related]
37. Encapsulating gold nanomaterials into size-controlled human serum albumin nanoparticles for cancer therapy platforms. Peralta DV; He J; Wheeler DA; Zhang JZ; Tarr MA J Microencapsul; 2014; 31(8):824-31. PubMed ID: 25090588 [TBL] [Abstract][Full Text] [Related]
38. Graphene nanomesh promises extremely efficient in vivo photothermal therapy. Akhavan O; Ghaderi E Small; 2013 Nov; 9(21):3593-601. PubMed ID: 23625739 [TBL] [Abstract][Full Text] [Related]
39. Hyaluronic acid-modified Fe3O4@Au core/shell nanostars for multimodal imaging and photothermal therapy of tumors. Li J; Hu Y; Yang J; Wei P; Sun W; Shen M; Zhang G; Shi X Biomaterials; 2015 Jan; 38():10-21. PubMed ID: 25457979 [TBL] [Abstract][Full Text] [Related]
40. Near-infrared inorganic nanomaterial-based nanosystems for photothermal therapy. Wang Y; Meng HM; Li Z Nanoscale; 2021 May; 13(19):8751-8772. PubMed ID: 33973616 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]