These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 24811260)
21. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. Van Bael S; Chai YC; Truscello S; Moesen M; Kerckhofs G; Van Oosterwyck H; Kruth JP; Schrooten J Acta Biomater; 2012 Jul; 8(7):2824-34. PubMed ID: 22487930 [TBL] [Abstract][Full Text] [Related]
22. Effect of Alkali-Acid-Heat Chemical Surface Treatment on Electron Beam Melted Porous Titanium and Its Apatite Forming Ability. Bsat S; Yavari SA; Munsch M; Valstar ER; Zadpoor AA Materials (Basel); 2015 Apr; 8(4):1612-1625. PubMed ID: 28788021 [TBL] [Abstract][Full Text] [Related]
23. Effect of HCl concentrations on apatite-forming ability of NaOH-HCl- and heat-treated titanium metal. Pattanayak DK; Kawai T; Matsushita T; Takadama H; Nakamura T; Kokubo T J Mater Sci Mater Med; 2009 Dec; 20(12):2401-11. PubMed ID: 19585225 [TBL] [Abstract][Full Text] [Related]
24. Preparation, characterization, in vitro bioactivity, and osteoblast adhesion of multi-level porous titania layer on titanium by two-step anodization treatment. Xie L; Liao X; Yin G; Huang Z; Yan D; Yao Y; Liu W; Chen X; Gu J J Biomed Mater Res A; 2011 Aug; 98(2):312-20. PubMed ID: 21626663 [TBL] [Abstract][Full Text] [Related]
25. Porous diopside (CaMgSi(2)O(6)) scaffold: A promising bioactive material for bone tissue engineering. Wu C; Ramaswamy Y; Zreiqat H Acta Biomater; 2010 Jun; 6(6):2237-45. PubMed ID: 20018260 [TBL] [Abstract][Full Text] [Related]
26. Surface engineering of titanium with potassium hydroxide and its effects on the growth behavior of mesenchymal stem cells. Cai K; Lai M; Yang W; Hu R; Xin R; Liu Q; Sung KL Acta Biomater; 2010 Jun; 6(6):2314-21. PubMed ID: 19963080 [TBL] [Abstract][Full Text] [Related]
27. High biocompatibility and improved osteogenic potential of novel Ca-P/titania composite scaffolds designed for regeneration of load-bearing segmental bone defects. Cunha C; Sprio S; Panseri S; Dapporto M; Marcacci M; Tampieri A J Biomed Mater Res A; 2013 Jun; 101(6):1612-9. PubMed ID: 23172612 [TBL] [Abstract][Full Text] [Related]
28. Hybrid Macro-Porous Titanium Ornamented by Degradable 3D Gel/nHA Micro-Scaffolds for Bone Tissue Regeneration. Yin B; Ma P; Chen J; Wang H; Wu G; Li B; Li Q; Huang Z; Qiu G; Wu Z Int J Mol Sci; 2016 Apr; 17(4):575. PubMed ID: 27092492 [TBL] [Abstract][Full Text] [Related]
29. Apatite-forming ability of titanium in terms of pH of the exposed solution. Pattanayak DK; Yamaguchi S; Matsushita T; Nakamura T; Kokubo T J R Soc Interface; 2012 Sep; 9(74):2145-55. PubMed ID: 22417910 [TBL] [Abstract][Full Text] [Related]
30. Relationship between osseointegration and superelastic biomechanics in porous NiTi scaffolds. Liu X; Wu S; Yeung KW; Chan YL; Hu T; Xu Z; Liu X; Chung JC; Cheung KM; Chu PK Biomaterials; 2011 Jan; 32(2):330-8. PubMed ID: 20869110 [TBL] [Abstract][Full Text] [Related]
31. Ti6Ta4Sn alloy and subsequent scaffolding for bone tissue engineering. Li Y; Xiong J; Wong CS; Hodgson PD; Wen C Tissue Eng Part A; 2009 Oct; 15(10):3151-9. PubMed ID: 19351266 [TBL] [Abstract][Full Text] [Related]
32. Surface nanoscale patterning of bioactive glass to support cellular growth and differentiation. Lei B; Chen X; Wang Y; Zhao N; Du C; Fang L J Biomed Mater Res A; 2010 Sep; 94(4):1091-9. PubMed ID: 20694976 [TBL] [Abstract][Full Text] [Related]
33. Improved bioactivity of selective laser melting titanium: Surface modification with micro-/nano-textured hierarchical topography and bone regeneration performance evaluation. Xu JY; Chen XS; Zhang CY; Liu Y; Wang J; Deng FL Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():229-240. PubMed ID: 27524017 [TBL] [Abstract][Full Text] [Related]
34. Acidic peptide hydrogel scaffolds enhance calcium phosphate mineral turnover into bone tissue. Amosi N; Zarzhitsky S; Gilsohn E; Salnikov O; Monsonego-Ornan E; Shahar R; Rapaport H Acta Biomater; 2012 Jul; 8(7):2466-75. PubMed ID: 22503952 [TBL] [Abstract][Full Text] [Related]
35. Strontium-containing mesoporous bioactive glass scaffolds with improved osteogenic/cementogenic differentiation of periodontal ligament cells for periodontal tissue engineering. Wu C; Zhou Y; Lin C; Chang J; Xiao Y Acta Biomater; 2012 Oct; 8(10):3805-15. PubMed ID: 22750735 [TBL] [Abstract][Full Text] [Related]
36. Evaluation of the bioactivity of titanium after varied surface treatments using human osteosarcoma osteoblast cells: an in vitro study. Singh RG Int J Oral Maxillofac Implants; 2011; 26(5):998-1003. PubMed ID: 22010082 [TBL] [Abstract][Full Text] [Related]
37. Porous titanium scaffolds with injectable hyaluronic acid-DBM gel for bone substitution in a rat critical-sized calvarial defect model. van Houdt CIA; Cardoso DA; van Oirschot BAJA; Ulrich DJO; Jansen JA; Leeuwenburgh SCG; van den Beucken JJJP J Tissue Eng Regen Med; 2017 Sep; 11(9):2537-2548. PubMed ID: 27017921 [TBL] [Abstract][Full Text] [Related]
38. Relationship between in vitro apatite-forming ability measured using simulated body fluid and in vivo bioactivity of biomaterials. Zadpoor AA Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():134-43. PubMed ID: 24411361 [TBL] [Abstract][Full Text] [Related]
39. Photoluminescence in the characterization and early detection of biomimetic bone-like apatite formation on the surface of alkaline-treated titanium implant: state of the art. Sepahvandi A; Moztarzadeh F; Mozafari M; Ghaffari M; Raee N Colloids Surf B Biointerfaces; 2011 Sep; 86(2):390-6. PubMed ID: 21592746 [TBL] [Abstract][Full Text] [Related]
40. The importance of particle size in porous titanium and nonporous counterparts for surface energy and its impact on apatite formation. Chen XB; Li YC; Hodgson PD; Wen C Acta Biomater; 2009 Jul; 5(6):2290-302. PubMed ID: 19307162 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]