These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 24811260)

  • 41. Biomechanical properties of jaw periosteum-derived mineralized culture on different titanium topography.
    Att W; Kubo K; Yamada M; Maeda H; Ogawa T
    Int J Oral Maxillofac Implants; 2009; 24(5):831-41. PubMed ID: 19865623
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fabrication, structure and biological properties of organic acid-derived sol-gel bioactive glasses.
    Lei B; Chen X; Wang Y; Zhao N; Du C; Fang L
    Biomed Mater; 2010 Oct; 5(5):054103. PubMed ID: 20876955
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Selective laser melting-produced porous titanium scaffolds regenerate bone in critical size cortical bone defects.
    Van der Stok J; Van der Jagt OP; Amin Yavari S; De Haas MF; Waarsing JH; Jahr H; Van Lieshout EM; Patka P; Verhaar JA; Zadpoor AA; Weinans H
    J Orthop Res; 2013 May; 31(5):792-9. PubMed ID: 23255164
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Novel apatite fiber scaffolds can promote three-dimensional proliferation of osteoblasts in rodent bone regeneration models.
    Morisue H; Matsumoto M; Chiba K; Matsumoto H; Toyama Y; Aizawa M; Kanzawa N; Fujimi TJ; Uchida H; Okada I
    J Biomed Mater Res A; 2009 Sep; 90(3):811-8. PubMed ID: 18615469
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influence of calcium ion deposition on apatite-inducing ability of porous titanium for biomedical applications.
    Chen XB; Li YC; Du Plessis J; Hodgson PD; Wen C
    Acta Biomater; 2009 Jun; 5(5):1808-20. PubMed ID: 19223253
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Selective Laser Sintering-produced porous titanium alloy scaffold for bone tissue engineering].
    Ding R; Wu Z; Qiu G; Wu G; Wang H; Su X; Yin B; Ma S; Qi B
    Zhonghua Yi Xue Za Zhi; 2014 May; 94(19):1499-502. PubMed ID: 25143173
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhanced bone regeneration of cortical segmental bone defects using porous titanium scaffolds incorporated with colloidal gelatin gels for time- and dose-controlled delivery of dual growth factors.
    van der Stok J; Wang H; Amin Yavari S; Siebelt M; Sandker M; Waarsing JH; Verhaar JA; Jahr H; Zadpoor AA; Leeuwenburgh SC; Weinans H
    Tissue Eng Part A; 2013 Dec; 19(23-24):2605-14. PubMed ID: 23822814
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cytocompatibility, osseointegration, and bioactivity of three-dimensional porous and nanostructured network on polyetheretherketone.
    Zhao Y; Wong HM; Wang W; Li P; Xu Z; Chong EY; Yan CH; Yeung KW; Chu PK
    Biomaterials; 2013 Dec; 34(37):9264-77. PubMed ID: 24041423
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of heat treatments on apatite-forming ability of NaOH- and HCl-treated titanium metal.
    Pattanayak DK; Yamaguchi S; Matsushita T; Kokubo T
    J Mater Sci Mater Med; 2011 Feb; 22(2):273-8. PubMed ID: 21188481
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization of titanium surfaces with calcium and phosphate and osteoblast adhesion.
    Feng B; Weng J; Yang BC; Qu SX; Zhang XD
    Biomaterials; 2004 Aug; 25(17):3421-8. PubMed ID: 15020115
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Simple surface modification of poly(epsilon-caprolactone) to induce its apatite-forming ability.
    Oyane A; Uchida M; Yokoyama Y; Choong C; Triffitt J; Ito A
    J Biomed Mater Res A; 2005 Oct; 75(1):138-45. PubMed ID: 16044403
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bioactive polymeric-ceramic hybrid 3D scaffold for application in bone tissue regeneration.
    Torres AL; Gaspar VM; Serra IR; Diogo GS; Fradique R; Silva AP; Correia IJ
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4460-9. PubMed ID: 23910366
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhancement of bone-titanium integration profile with UV-photofunctionalized titanium in a gap healing model.
    Ueno T; Yamada M; Suzuki T; Minamikawa H; Sato N; Hori N; Takeuchi K; Hattori M; Ogawa T
    Biomaterials; 2010 Mar; 31(7):1546-57. PubMed ID: 19962757
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Full regeneration of segmental bone defects using porous titanium implants loaded with BMP-2 containing fibrin gels.
    van der Stok J; Koolen MK; de Maat MP; Yavari SA; Alblas J; Patka P; Verhaar JA; van Lieshout EM; Zadpoor AA; Weinans H; Jahr H
    Eur Cell Mater; 2015 Mar; 29():141-53; discussion 153-4. PubMed ID: 25738583
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparative evaluation of different calcium phosphate-based bone graft granules - an in vitro study with osteoblast-like cells.
    Bernhardt A; Lode A; Peters F; Gelinsky M
    Clin Oral Implants Res; 2013 Apr; 24(4):441-9. PubMed ID: 22092911
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multi-level factorial analysis of Ca2+/Pi supplementation as bio-instructive media for in vitro biomimetic engineering of three-dimensional osteogenic hybrids.
    Chai YC; Roberts SJ; Van Bael S; Chen Y; Luyten FP; Schrooten J
    Tissue Eng Part C Methods; 2012 Feb; 18(2):90-103. PubMed ID: 21933019
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biomimetic deposition of apatite coating on surface-modified NiTi alloy.
    Gu YW; Tay BY; Lim CS; Yong MS
    Biomaterials; 2005 Dec; 26(34):6916-23. PubMed ID: 15941583
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Human periosteum-derived cells combined with superporous hydroxyapatite blocks used as an osteogenic bone substitute for periodontal regenerative therapy: an animal implantation study using nude mice.
    Kawase T; Okuda K; Kogami H; Nakayama H; Nagata M; Sato T; Wolff LF; Yoshie H
    J Periodontol; 2010 Mar; 81(3):420-7. PubMed ID: 20192869
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of phosphoric acid treatment of titanium surfaces on surface properties, osteoblast response and removal of torque forces.
    Park JW; Kim YJ; Jang JH; Kwon TG; Bae YC; Suh JY
    Acta Biomater; 2010 Apr; 6(4):1661-70. PubMed ID: 19819355
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Additively Manufactured and Surface Biofunctionalized Porous Nitinol.
    Gorgin Karaji Z; Speirs M; Dadbakhsh S; Kruth JP; Weinans H; Zadpoor AA; Amin Yavari S
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1293-1304. PubMed ID: 28001358
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.