These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 24811260)
61. Bioinspired Collagen-Apatite Nanocomposites for Bone Regeneration. Liu S; Sun Y; Fu Y; Chang D; Fu C; Wang G; Liu Y; Tay FR; Zhou Y J Endod; 2016 Aug; 42(8):1226-32. PubMed ID: 27377439 [TBL] [Abstract][Full Text] [Related]
62. Osteoinductive porous titanium implants: effect of sodium removal by dilute HCl treatment. Takemoto M; Fujibayashi S; Neo M; Suzuki J; Matsushita T; Kokubo T; Nakamura T Biomaterials; 2006 May; 27(13):2682-91. PubMed ID: 16413052 [TBL] [Abstract][Full Text] [Related]
63. Induction of new bone by basic FGF-loaded porous carbonate apatite implants in femur defects in rats. Keiichi K; Mitsunobu K; Masafumi S; Yutaka D; Toshiaki S Clin Oral Implants Res; 2009 Jun; 20(6):560-5. PubMed ID: 19515035 [TBL] [Abstract][Full Text] [Related]
64. [Tissue engineered bone regeneration of periosteal cells using recombinant human bone morphogenetic protein 2 induce]. Zhang C; Hu Y; Xiong Z; Zhang S; Yan Y; Cui F Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Feb; 19(2):100-4. PubMed ID: 15759922 [TBL] [Abstract][Full Text] [Related]
65. Biological advantages of porous hydroxyapatite scaffold made by solid freeform fabrication for bone tissue regeneration. Kwon BJ; Kim J; Kim YH; Lee MH; Baek HS; Lee DH; Kim HL; Seo HJ; Lee MH; Kwon SY; Koo MA; Park JC Artif Organs; 2013 Jul; 37(7):663-70. PubMed ID: 23419084 [TBL] [Abstract][Full Text] [Related]
66. Enhanced bone-integration capability of alkali- and heat-treated nanopolymorphic titanium in micro-to-nanoscale hierarchy. Ueno T; Tsukimura N; Yamada M; Ogawa T Biomaterials; 2011 Oct; 32(30):7297-308. PubMed ID: 21742375 [TBL] [Abstract][Full Text] [Related]
67. Efficacy of sintered Zinc-doped fluorapatite scaffold as an antimicrobial regenerative bone filler for dental applications. Steyl SK; Jeyapalina S; Griffin A; Krishnamoorthi V; Beck JP; Agarwal J; Shea J J Dent; 2024 Jul; 146():105070. PubMed ID: 38740251 [TBL] [Abstract][Full Text] [Related]
68. Biomimetically Ornamented Rapid Prototyping Fabrication of an Apatite-Collagen-Polycaprolactone Composite Construct with Nano-Micro-Macro Hierarchical Structure for Large Bone Defect Treatment. Wang J; Wu D; Zhang Z; Li J; Shen Y; Wang Z; Li Y; Zhang ZY; Sun J ACS Appl Mater Interfaces; 2015 Dec; 7(47):26244-56. PubMed ID: 26551161 [TBL] [Abstract][Full Text] [Related]
69. Improved adhesion of human cultured periosteal sheets to a porous poly(L-lactic acid) membrane scaffold without the aid of exogenous adhesion biomolecules. Kawase T; Tanaka T; Nishimoto T; Okuda K; Nagata M; Burns DM; Yoshie H J Biomed Mater Res A; 2011 Jul; 98(1):100-13. PubMed ID: 21544931 [TBL] [Abstract][Full Text] [Related]
70. Effects of macropore size in carbonate apatite honeycomb scaffolds on bone regeneration. Hayashi K; Munar ML; Ishikawa K Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110848. PubMed ID: 32279778 [TBL] [Abstract][Full Text] [Related]
71. Development of a novel bioactive titanium membrane with alkali treatment for bone regeneration. Umehara H; Doi K; Oki Y; Kobatake R; Makihara Y; Kubo T; Tsuga K Dent Mater J; 2020 Sep; 39(5):877-882. PubMed ID: 32448849 [TBL] [Abstract][Full Text] [Related]
72. Porous titania surfaces on titanium with hierarchical macro- and mesoporosities for enhancing cell adhesion, proliferation and mineralization. Han G; Müller WE; Wang X; Lilja L; Shen Z Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():376-83. PubMed ID: 25492210 [TBL] [Abstract][Full Text] [Related]
73. Effects of deer age on the physicochemical properties of deproteinized antler cancellous bone: an approach to optimize osteoconductivity of bone graft. Meng S; Zhang X; Xu M; Heng BC; Dai X; Mo X; Wei J; Wei Y; Deng X Biomed Mater; 2015 Jun; 10(3):035006. PubMed ID: 26040963 [TBL] [Abstract][Full Text] [Related]
74. Fabrication and apatite inducing ability of different porous titania structures by PEO treatment. Rao X; Chu CL; Sun Q; Zheng YY Mater Sci Eng C Mater Biol Appl; 2016 Sep; 66():297-305. PubMed ID: 27207066 [TBL] [Abstract][Full Text] [Related]
75. Effect of adding nano-titanium dioxide on the microstructure, mechanical properties and in vitro bioactivity of a freeze cast merwinite scaffold. Nezafati N; Hafezi M; Zamanian A; Naserirad M Biotechnol Prog; 2015; 31(2):550-6. PubMed ID: 25586918 [TBL] [Abstract][Full Text] [Related]
76. Bone tissue regeneration: the role of scaffold geometry. Zadpoor AA Biomater Sci; 2015 Feb; 3(2):231-45. PubMed ID: 26218114 [TBL] [Abstract][Full Text] [Related]
77. Multilayered Titanium Carbide MXene Film for Guided Bone Regeneration. Zhang J; Fu Y; Mo A Int J Nanomedicine; 2019; 14():10091-10103. PubMed ID: 31920305 [TBL] [Abstract][Full Text] [Related]
78. Bone-bonding properties of Ti metal subjected to acid and heat treatments. Kawai T; Takemoto M; Fujibayashi S; Neo M; Akiyama H; Yamaguchi S; Pattanayak DK; Matsushita T; Nakamura T; Kokubo T J Mater Sci Mater Med; 2012 Dec; 23(12):2981-92. PubMed ID: 22948713 [TBL] [Abstract][Full Text] [Related]
79. Biological Behavior of Osteoblast Cell and Apatite Forming Ability of the Surface Modified Ti Alloys. Zhao J; Hwang KH; Choi WS; Shin SJ; Lee JK J Nanosci Nanotechnol; 2016 Feb; 16(2):1541-4. PubMed ID: 27433617 [TBL] [Abstract][Full Text] [Related]
80. Effects of apatite foam combined with platelet-rich plasma on regeneration of bone defects. Sugimori E; Shintani S; Ishikawa K; Hamakawa H Dent Mater J; 2006 Sep; 25(3):591-6. PubMed ID: 17076332 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]