BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 24811319)

  • 1. Three types of ependymal cells with intracellular calcium oscillation are characterized by distinct cilia beating properties.
    Liu T; Jin X; Prasad RM; Sari Y; Nauli SM
    J Neurosci Res; 2014 Sep; 92(9):1199-204. PubMed ID: 24811319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Live Imaging of the Ependymal Cilia in the Lateral Ventricles of the Mouse Brain.
    Al Omran AJ; Saternos HC; Liu T; Nauli SM; AbouAlaiwi WA
    J Vis Exp; 2015 Jun; (100):e52853. PubMed ID: 26067390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alcohol consumption impairs the ependymal cilia motility in the brain ventricles.
    Omran AJA; Saternos HC; Althobaiti YS; Wisner A; Sari Y; Nauli SM; AbouAlaiwi WA
    Sci Rep; 2017 Oct; 7(1):13652. PubMed ID: 29057897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Planar polarity of ependymal cilia.
    Kishimoto N; Sawamoto K
    Differentiation; 2012 Feb; 83(2):S86-90. PubMed ID: 22101065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cilia organize ependymal planar polarity.
    Mirzadeh Z; Han YG; Soriano-Navarro M; García-Verdugo JM; Alvarez-Buylla A
    J Neurosci; 2010 Feb; 30(7):2600-10. PubMed ID: 20164345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The organic mercury compounds, methylmercury and ethylmercury, inhibited ciliary movement of ventricular ependymal cells in the mouse brain around the concentrations reported for human poisoning.
    Yoshida S; Matsumoto S; Kanchika T; Hagiwara T; Minami T
    Neurotoxicology; 2016 Dec; 57():69-74. PubMed ID: 27620881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Melanin-concentrating hormone regulates beat frequency of ependymal cilia and ventricular volume.
    Conductier G; Brau F; Viola A; Langlet F; Ramkumar N; Dehouck B; Lemaire T; Chapot R; Lucas L; Rovère C; Maitre P; Hosseiny S; Petit-Paitel A; Adamantidis A; Lakaye B; Risold PY; Prévot V; Meste O; Nahon JL; Guyon A
    Nat Neurosci; 2013 Jul; 16(7):845-7. PubMed ID: 23708141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of pneumolysin on rat brain ciliary function: comparison of brain slices with cultured ependymal cells.
    Hirst RA; Rutman A; Sikand K; Andrew PW; Mitchell TJ; O'Callaghan C
    Pediatr Res; 2000 Mar; 47(3):381-4. PubMed ID: 10709739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular pathways regulating ciliary beating of rat brain ependymal cells.
    Nguyen T; Chin WC; O'Brien JA; Verdugo P; Berger AJ
    J Physiol; 2001 Feb; 531(Pt 1):131-40. PubMed ID: 11179397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ependymal cell differentiation, from monociliated to multiciliated cells.
    Delgehyr N; Meunier A; Faucourt M; Bosch Grau M; Strehl L; Janke C; Spassky N
    Methods Cell Biol; 2015; 127():19-35. PubMed ID: 25837384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adenosine Stimulates Beating of Neonatal Brain-Derived Cilia through Adenosine A
    Kawaguchi K; Tsuji S; Hirao T; Liu Y; Boshi Z; Asano S
    Biol Pharm Bull; 2024; 47(6):1113-1118. PubMed ID: 38839362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Planar Organization of Multiciliated Ependymal (E1) Cells in the Brain Ventricular Epithelium.
    Ohata S; Alvarez-Buylla A
    Trends Neurosci; 2016 Aug; 39(8):543-551. PubMed ID: 27311928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ependymal cilia beating induces an actin network to protect centrioles against shear stress.
    Mahuzier A; Shihavuddin A; Fournier C; Lansade P; Faucourt M; Menezes N; Meunier A; Garfa-Traoré M; Carlier MF; Voituriez R; Genovesio A; Spassky N; Delgehyr N
    Nat Commun; 2018 Jun; 9(1):2279. PubMed ID: 29891944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PACAP27 regulates ciliary function in primary cultures of rat brain ependymal cells.
    Mönkkönen KS; Hirst RA; Laitinen JT; O'Callaghan C
    Neuropeptides; 2008; 42(5-6):633-40. PubMed ID: 18986701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mouse Jhy gene regulates ependymal cell differentiation and ciliogenesis.
    Muniz-Talavera H; Schmidt JV
    PLoS One; 2017; 12(12):e0184957. PubMed ID: 29211732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amyloid-β slows cilia movement along the ventricle, impairs fluid flow, and exacerbates its neurotoxicity in explant culture.
    Makibatake R; Oda S; Yagi Y; Tatsumi H
    Sci Rep; 2023 Aug; 13(1):13586. PubMed ID: 37605005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring mechanisms of ventricular enlargement in idiopathic normal pressure hydrocephalus: a role of cerebrospinal fluid dynamics and motile cilia.
    Yamada S; Ishikawa M; Nozaki K
    Fluids Barriers CNS; 2021 Apr; 18(1):20. PubMed ID: 33874972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation.
    Ibañez-Tallon I; Pagenstecher A; Fliegauf M; Olbrich H; Kispert A; Ketelsen UP; North A; Heintz N; Omran H
    Hum Mol Genet; 2004 Sep; 13(18):2133-41. PubMed ID: 15269178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of Rsph9 causes neonatal hydrocephalus with abnormal development of motile cilia in mice.
    Zou W; Lv Y; Liu ZI; Xia P; Li H; Jiao J
    Sci Rep; 2020 Jul; 10(1):12435. PubMed ID: 32709945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SNX27 Deletion Causes Hydrocephalus by Impairing Ependymal Cell Differentiation and Ciliogenesis.
    Wang X; Zhou Y; Wang J; Tseng IC; Huang T; Zhao Y; Zheng Q; Gao Y; Luo H; Zhang X; Bu G; Hong W; Xu H
    J Neurosci; 2016 Dec; 36(50):12586-12597. PubMed ID: 27974614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.