These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
470 related articles for article (PubMed ID: 24811616)
1. Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. Kalaji HM; Oukarroum A; Alexandrov V; Kouzmanova M; Brestic M; Zivcak M; Samborska IA; Cetner MD; Allakhverdiev SI; Goltsev V Plant Physiol Biochem; 2014 Aug; 81():16-25. PubMed ID: 24811616 [TBL] [Abstract][Full Text] [Related]
2. Cold stress effects on PSI photochemistry in Zea mays: differential increase of FQR-dependent cyclic electron flow and functional implications. Savitch LV; Ivanov AG; Gudynaite-Savitch L; Huner NP; Simmonds J Plant Cell Physiol; 2011 Jun; 52(6):1042-54. PubMed ID: 21546369 [TBL] [Abstract][Full Text] [Related]
3. Assessment of the Photosynthetic Apparatus Functions by Chlorophyll Fluorescence and P Stefanov MA; Rashkov GD; Apostolova EL Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35409126 [TBL] [Abstract][Full Text] [Related]
4. Effect of far-red light exposure on photosynthesis and photoprotection in tomato plants transgenic for the Agrobacterium rhizogenes rolB gene. Bettini PP; Lazzara L; Massi L; Fani F; Mauro ML J Plant Physiol; 2020 Feb; 245():153095. PubMed ID: 31877472 [TBL] [Abstract][Full Text] [Related]
5. Photosynthetic acclimation to drought stress in Agave salmiana Otto ex Salm-Dyck seedlings is largely dependent on thermal dissipation and enhanced electron flux to photosystem I. Campos H; Trejo C; Peña-Valdivia CB; García-Nava R; Conde-Martínez FV; Cruz-Ortega Mdel R Photosynth Res; 2014 Oct; 122(1):23-39. PubMed ID: 24798124 [TBL] [Abstract][Full Text] [Related]
7. Characterization of photosynthetic performance during senescence in stay-green and quick-leaf-senescence Zea mays L. inbred lines. Zhang Z; Li G; Gao H; Zhang L; Yang C; Liu P; Meng Q PLoS One; 2012; 7(8):e42936. PubMed ID: 22900069 [TBL] [Abstract][Full Text] [Related]
8. Harnessing the Role of Foliar Applied Salicylic Acid in Decreasing Chlorophyll Content to Reassess Photosystem II Photoprotection in Crop Plants. Moustakas M; Sperdouli I; Adamakis IS; Moustaka J; İşgören S; Şaş B Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35806045 [TBL] [Abstract][Full Text] [Related]
9. Fast chlorophyll a fluorescence induction (OJIP) phenotyping of chlorophyll-deficient wheat suggests that an enlarged acceptor pool size of Photosystem I helps compensate for a deregulated photosynthetic electron flow. Ferroni L; Živčak M; Kovar M; Colpo A; Pancaldi S; Allakhverdiev SI; Brestič M J Photochem Photobiol B; 2022 Sep; 234():112549. PubMed ID: 36049286 [TBL] [Abstract][Full Text] [Related]
10. Adaptation of photosynthesis under iron deficiency in maize. Sharma S J Plant Physiol; 2007 Oct; 164(10):1261-7. PubMed ID: 17602787 [TBL] [Abstract][Full Text] [Related]
11. Low Light Increases the Abundance of Light Reaction Proteins: Proteomics Analysis of Maize ( Zheng B; Zhao W; Ren T; Zhang X; Ning T; Liu P; Li G Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328436 [TBL] [Abstract][Full Text] [Related]
12. CO2 response of cyclic electron flow around PSI (CEF-PSI) in tobacco leaves--relative electron fluxes through PSI and PSII determine the magnitude of non-photochemical quenching (NPQ) of Chl fluorescence. Miyake C; Miyata M; Shinzaki Y; Tomizawa K Plant Cell Physiol; 2005 Apr; 46(4):629-37. PubMed ID: 15701657 [TBL] [Abstract][Full Text] [Related]
13. Fluorescence F 0 of photosystems II and I in developing C3 and C 4 leaves, and implications on regulation of excitation balance. Peterson RB; Oja V; Eichelmann H; Bichele I; Dall'Osto L; Laisk A Photosynth Res; 2014 Oct; 122(1):41-56. PubMed ID: 24817180 [TBL] [Abstract][Full Text] [Related]
14. Responses of photosynthesis, nitrogen and proline metabolism to salinity stress in Solanum lycopersicum under different levels of nitrogen supplementation. Singh M; Singh VP; Prasad SM Plant Physiol Biochem; 2016 Dec; 109():72-83. PubMed ID: 27639963 [TBL] [Abstract][Full Text] [Related]
15. Root signals and stomatal closure in relation to photosynthesis, chlorophyll a fluorescence and adventitious rooting of flooded tomato plants. Else MA; Janowiak F; Atkinson CJ; Jackson MB Ann Bot; 2009 Jan; 103(2):313-23. PubMed ID: 19001430 [TBL] [Abstract][Full Text] [Related]
16. Differences in photosynthetic responses of NADP-ME type C4 species to high light. Romanowska E; Buczyńska A; Wasilewska W; Krupnik T; Drożak A; Rogowski P; Parys E; Zienkiewicz M Planta; 2017 Mar; 245(3):641-657. PubMed ID: 27990574 [TBL] [Abstract][Full Text] [Related]
17. Photosynthetic Linear Electron Flow Drives CO Shimakawa G; Miyake C Int J Mol Sci; 2021 May; 22(9):. PubMed ID: 34063101 [TBL] [Abstract][Full Text] [Related]
18. A RNA-Seq Analysis of the Response of Photosynthetic System to Low Nitrogen Supply in Maize Leaf. Mu X; Chen Q; Chen F; Yuan L; Mi G Int J Mol Sci; 2017 Dec; 18(12):. PubMed ID: 29206208 [TBL] [Abstract][Full Text] [Related]
19. Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Zivcak M; Brestic M; Balatova Z; Drevenakova P; Olsovska K; Kalaji HM; Yang X; Allakhverdiev SI Photosynth Res; 2013 Nov; 117(1-3):529-46. PubMed ID: 23860828 [TBL] [Abstract][Full Text] [Related]
20. Effects of acute O3 stress on PSII and PSI photochemistry of sensitive and resistant snap bean genotypes (Phaseolus vulgaris L.), probed by prompt chlorophyll "a" fluorescence and 820 nm modulated reflectance. Salvatori E; Fusaro L; Strasser RJ; Bussotti F; Manes F Plant Physiol Biochem; 2015 Dec; 97():368-77. PubMed ID: 26535554 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]