These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 24811651)

  • 1. Benchmarking the performance of density functional theory and point charge force fields in their description of sI methane hydrate against diffusion Monte Carlo.
    Cox SJ; Towler MD; Alfè D; Michaelides A
    J Chem Phys; 2014 May; 140(17):174703. PubMed ID: 24811651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. He Inclusion in Ice-like and Clathrate-like Frameworks: A Benchmark Quantum Chemistry Study of Guest-Host Interactions.
    Yanes-Rodríguez R; Arismendi-Arrieta DJ; Prosmiti R
    J Chem Inf Model; 2020 Jun; 60(6):3043-3056. PubMed ID: 32469514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the accuracy of density-functional theory exchange-correlation functionals for H bonds in small water clusters. II. The water hexamer and van der Waals interactions.
    Santra B; Michaelides A; Fuchs M; Tkatchenko A; Filippi C; Scheffler M
    J Chem Phys; 2008 Nov; 129(19):194111. PubMed ID: 19026049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Importance of zero-point energy for crystalline ice phases: A comparison of force fields and density functional theory.
    Rasti S; Meyer J
    J Chem Phys; 2019 Jun; 150(23):234504. PubMed ID: 31228884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculation of free energies and chemical potentials for gas hydrates using Monte Carlo simulations.
    Wierzchowski SJ; Monson PA
    J Phys Chem B; 2007 Jun; 111(25):7274-82. PubMed ID: 17530795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Appropriate description of intermolecular interactions in the methane hydrates: an assessment of DFT methods.
    Liu Y; Zhao J; Li F; Chen Z
    J Comput Chem; 2013 Jan; 34(2):121-31. PubMed ID: 22949382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen-bond vibrational and energetic dynamical properties in sI and sII clathrate hydrates and in ice Ih: Molecular dynamics insights.
    Chakraborty SN; English NJ
    J Chem Phys; 2015 Oct; 143(15):154504. PubMed ID: 26493912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A potential model for methane in water describing correctly the solubility of the gas and the properties of the methane hydrate.
    Docherty H; Galindo A; Vega C; Sanz E
    J Chem Phys; 2006 Aug; 125(7):074510. PubMed ID: 16942354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer simulation of methane hydrate cage occupancy.
    Sizov VV; Piotrovskaya EM
    J Phys Chem B; 2007 Mar; 111(11):2886-90. PubMed ID: 17388408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum Monte Carlo Benchmark of Exchange-Correlation Functionals for Bulk Water.
    Morales MA; Gergely JR; McMinis J; McMahon JM; Kim J; Ceperley DM
    J Chem Theory Comput; 2014 Jun; 10(6):2355-62. PubMed ID: 26580755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A DFT and ab initio benchmarking study of metal-alkane interactions and the activation of carbon-hydrogen bonds.
    Flener-Lovitt C; Woon DE; Dunning TH; Girolami GS
    J Phys Chem A; 2010 Feb; 114(4):1843-51. PubMed ID: 20043689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of methane hydrate from polydisperse ice powders.
    Kuhs WF; Staykova DK; Salamatin AN
    J Phys Chem B; 2006 Jul; 110(26):13283-95. PubMed ID: 16805643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular potential energies in dodecahedron cell of methane hydrate and dispersion correction for DFT.
    Du QS; Li DP; Liu PJ; Huang RB
    J Mol Graph Model; 2008 Sep; 27(2):140-6. PubMed ID: 18485767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micromechanical cohesion force between gas hydrate particles measured under high pressure and low temperature conditions.
    Lee BR; Sum AK
    Langmuir; 2015 Apr; 31(13):3884-8. PubMed ID: 25785915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the accuracy of quantum Monte Carlo and density functional theory for energetics of small water clusters.
    Gillan MJ; Manby FR; Towler MD; Alfè D
    J Chem Phys; 2012 Jun; 136(24):244105. PubMed ID: 22755563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unrestricted prescriptions for open-shell singlet diradicals: using economical ab initio and density functional theory to calculate singlet-triplet gaps and bond dissociation curves.
    Ess DH; Cook TC
    J Phys Chem A; 2012 May; 116(20):4922-9. PubMed ID: 22578025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density-Functional Theory with Dispersion-Correcting Potentials for Methane: Bridging the Efficiency and Accuracy Gap between High-Level Wave Function and Classical Molecular Mechanics Methods.
    Torres E; DiLabio GA
    J Chem Theory Comput; 2013 Aug; 9(8):3342-9. PubMed ID: 26584091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential models for the simulation of methane adsorption on graphene: development and CCSD(T) benchmarks.
    Vekeman J; G Cuesta I; Faginas-Lago N; Wilson J; Sánchez-Marín J; Sánchez de Merás A
    Phys Chem Chem Phys; 2018 Oct; 20(39):25518-25530. PubMed ID: 30277488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational phase diagrams of noble gas hydrates under pressure.
    Teeratchanan P; Hermann A
    J Chem Phys; 2015 Oct; 143(15):154507. PubMed ID: 26493915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structures of the I-, II- and H-methane clathrates and the ice-methane clathrate phase transition from quantum-chemical modeling with force-field thermal corrections.
    Lenz A; Ojamäe L
    J Phys Chem A; 2011 Jun; 115(23):6169-76. PubMed ID: 21341763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.