These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Fabrication of photo-crosslinked chitosan- gelatin scaffold in sodium alginate hydrogel for chondrocyte culture. Zhao P; Deng C; Xu H; Tang X; He H; Lin C; Su J Biomed Mater Eng; 2014; 24(1):633-41. PubMed ID: 24211948 [TBL] [Abstract][Full Text] [Related]
3. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Balakrishnan B; Jayakrishnan A Biomaterials; 2005 Jun; 26(18):3941-51. PubMed ID: 15626441 [TBL] [Abstract][Full Text] [Related]
8. Self-crosslinking effect of chitosan and gelatin on alginate based hydrogels: Injectable in situ forming scaffolds. Naghizadeh Z; Karkhaneh A; Khojasteh A Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():256-264. PubMed ID: 29752097 [TBL] [Abstract][Full Text] [Related]
9. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Awad HA; Wickham MQ; Leddy HA; Gimble JM; Guilak F Biomaterials; 2004 Jul; 25(16):3211-22. PubMed ID: 14980416 [TBL] [Abstract][Full Text] [Related]
10. Shear-reversibly crosslinked alginate hydrogels for tissue engineering. Park H; Kang SW; Kim BS; Mooney DJ; Lee KY Macromol Biosci; 2009 Sep; 9(9):895-901. PubMed ID: 19422012 [TBL] [Abstract][Full Text] [Related]
11. Effects of purified alginate sponge on the regeneration of chondrocytes: in vitro and in vivo. Song JE; Kim AR; Lee CJ; Tripathy N; Yoon KH; Lee D; Khang G J Biomater Sci Polym Ed; 2015; 26(3):181-95. PubMed ID: 25495827 [TBL] [Abstract][Full Text] [Related]
12. Alginate-based hydrogels with improved adhesive properties for cell encapsulation. Sarker B; Rompf J; Silva R; Lang N; Detsch R; Kaschta J; Fabry B; Boccaccini AR Int J Biol Macromol; 2015; 78():72-8. PubMed ID: 25847839 [TBL] [Abstract][Full Text] [Related]
14. Autologous nasal chondrocytes delivered by injectable hydrogel for in vivo articular cartilage regeneration. Chen W; Li C; Peng M; Xie B; Zhang L; Tang X Cell Tissue Bank; 2018 Mar; 19(1):35-46. PubMed ID: 28815373 [TBL] [Abstract][Full Text] [Related]
15. The enhancement of chondrogenesis of ATDC5 cells in RGD-immobilized microcavitary alginate hydrogels. Yao Y; Zeng L; Huang Y J Biomater Appl; 2016 Jul; 31(1):92-101. PubMed ID: 27000189 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Balakrishnan B; Mohanty M; Umashankar PR; Jayakrishnan A Biomaterials; 2005 Nov; 26(32):6335-42. PubMed ID: 15919113 [TBL] [Abstract][Full Text] [Related]
17. In vitro expression of cartilage-specific markers by chondrocytes on a biocompatible hydrogel: implications for engineering cartilage tissue. Risbud M; Ringe J; Bhonde R; Sittinger M Cell Transplant; 2001; 10(8):755-63. PubMed ID: 11814119 [TBL] [Abstract][Full Text] [Related]
18. Effect of microcavitary alginate hydrogel with different pore sizes on chondrocyte culture for cartilage tissue engineering. Zeng L; Yao Y; Wang DA; Chen X Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():168-75. PubMed ID: 24268246 [TBL] [Abstract][Full Text] [Related]
19. Design, fabrication and characterization of oxidized alginate-gelatin hydrogels for muscle tissue engineering applications. Baniasadi H; Mashayekhan S; Fadaoddini S; Haghirsharifzamini Y J Biomater Appl; 2016 Jul; 31(1):152-61. PubMed ID: 26916948 [TBL] [Abstract][Full Text] [Related]