These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 24811868)

  • 1. The critical role of grain orientation and applied stress in nanoscale twinning.
    McCabe RJ; Beyerlein IJ; Carpenter JS; Mara NA
    Nat Commun; 2014 May; 5():3806. PubMed ID: 24811868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inverse grain-size effect on twinning in nanocrystalline Ni.
    Wu XL; Zhu YT
    Phys Rev Lett; 2008 Jul; 101(2):025503. PubMed ID: 18764195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combination of in situ straining and ACOM TEM: a novel method for analysis of plastic deformation of nanocrystalline metals.
    Kobler A; Kashiwar A; Hahn H; Kübel C
    Ultramicroscopy; 2013 May; 128():68-81. PubMed ID: 23524380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation.
    Yamakov V; Wolf D; Phillpot SR; Mukherjee AK; Gleiter H
    Nat Mater; 2004 Jan; 3(1):43-7. PubMed ID: 14704784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New deformation twinning mechanism generates zero macroscopic strain in nanocrystalline metals.
    Wu XL; Liao XZ; Srinivasan SG; Zhou F; Lavernia EJ; Valiev RZ; Zhu YT
    Phys Rev Lett; 2008 Mar; 100(9):095701. PubMed ID: 18352724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deformation twinning in nanocrystalline aluminum.
    Chen M; Ma E; Hemker KJ; Sheng H; Wang Y; Cheng X
    Science; 2003 May; 300(5623):1275-7. PubMed ID: 12714676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deformation induced microtwins and stacking faults in aluminum single crystal.
    Han WZ; Cheng GM; Li SX; Wu SD; Zhang ZF
    Phys Rev Lett; 2008 Sep; 101(11):115505. PubMed ID: 18851297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Significant contribution of stacking faults to the strain hardening behavior of Cu-15%Al alloy with different grain sizes.
    Tian YZ; Zhao LJ; Chen S; Shibata A; Zhang ZF; Tsuji N
    Sci Rep; 2015 Nov; 5():16707. PubMed ID: 26582568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten.
    Wang J; Zeng Z; Weinberger CR; Zhang Z; Zhu T; Mao SX
    Nat Mater; 2015 Jun; 14(6):594-600. PubMed ID: 25751073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin of Deformation Twinning in bcc Tungsten and Molybdenum.
    Xiao J; Li S; Ma X; Gao J; Deng C; Wu Z; Zhu Y
    Phys Rev Lett; 2023 Sep; 131(13):136101. PubMed ID: 37832014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New twinning route in face-centered cubic nanocrystalline metals.
    Wang L; Guan P; Teng J; Liu P; Chen D; Xie W; Kong D; Zhang S; Zhu T; Zhang Z; Ma E; Chen M; Han X
    Nat Commun; 2017 Dec; 8(1):2142. PubMed ID: 29247224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High stress twinning in a compositionally complex steel of very high stacking fault energy.
    Wang Z; Lu W; An F; Song M; Ponge D; Raabe D; Li Z
    Nat Commun; 2022 Jun; 13(1):3598. PubMed ID: 35739123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theory of transformation-mediated twinning.
    Lu S; Sun X; Tian Y; An X; Li W; Chen Y; Zhang H; Vitos L
    PNAS Nexus; 2023 Jan; 2(1):pgac282. PubMed ID: 36712941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic Simulations of Grain Structures and Deformation Behaviors in Nanocrystalline CoCrFeNiMn High-Entropy Alloy.
    Hou J; Li Q; Wu C; Zheng L
    Materials (Basel); 2019 Mar; 12(7):. PubMed ID: 30934707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Review on Controlling Grain Boundary Character Distribution during Twinning-Related Grain Boundary Engineering of Face-Centered Cubic Materials.
    Zhang YQ; Quan GZ; Zhao J; Yu YZ; Xiong W
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The significance of deformation mechanisms on the fracture behavior of phase reversion-induced nanostructured austenitic stainless steel.
    Misra RDK; Injeti VSY; Somani MC
    Sci Rep; 2018 May; 8(1):7908. PubMed ID: 29784921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generalized stacking fault energies of alloys.
    Li W; Lu S; Hu QM; Kwon SK; Johansson B; Vitos L
    J Phys Condens Matter; 2014 Jul; 26(26):265005. PubMed ID: 24903220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deformation crossover: from nano- to mesoscale.
    Cheng S; Stoica AD; Wang XL; Ren Y; Almer J; Horton JA; Liu CT; Clausen B; Brown DW; Liaw PK; Zuo L
    Phys Rev Lett; 2009 Jul; 103(3):035502. PubMed ID: 19659294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effects of Grain Boundary Misorientation on the Mechanical Properties and Mechanism of Plastic Deformation of Ni/Ni
    Ding J; Zhang SL; Tong Q; Wang LS; Huang X; Song K; Lu SQ
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33333827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative analysis of {332}〈113〉 twinning in a Ti-15Mo alloy by
    Gutierrez-Urrutia I; Li CL; Ji X; Emura S; Tsuchiya K
    Sci Technol Adv Mater; 2018; 19(1):474-483. PubMed ID: 29915624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.