These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

778 related articles for article (PubMed ID: 24812127)

  • 1. Performance-optimized hierarchical models predict neural responses in higher visual cortex.
    Yamins DL; Hong H; Cadieu CF; Solomon EA; Seibert D; DiCarlo JJ
    Proc Natl Acad Sci U S A; 2014 Jun; 111(23):8619-24. PubMed ID: 24812127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factorized visual representations in the primate visual system and deep neural networks.
    Lindsey JW; Issa EB
    Elife; 2024 Jul; 13():. PubMed ID: 38968311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recurrent Connections in the Primate Ventral Visual Stream Mediate a Trade-Off Between Task Performance and Network Size During Core Object Recognition.
    Nayebi A; Sagastuy-Brena J; Bear DM; Kar K; Kubilius J; Ganguli S; Sussillo D; DiCarlo JJ; Yamins DLK
    Neural Comput; 2022 Jul; 34(8):1652-1675. PubMed ID: 35798321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Explicit information for category-orthogonal object properties increases along the ventral stream.
    Hong H; Yamins DL; Majaj NJ; DiCarlo JJ
    Nat Neurosci; 2016 Apr; 19(4):613-22. PubMed ID: 26900926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance.
    Majaj NJ; Hong H; Solomon EA; DiCarlo JJ
    J Neurosci; 2015 Sep; 35(39):13402-18. PubMed ID: 26424887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unsupervised changes in core object recognition behavior are predicted by neural plasticity in inferior temporal cortex.
    Jia X; Hong H; DiCarlo JJ
    Elife; 2021 Jun; 10():. PubMed ID: 34114566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural dynamics at successive stages of the ventral visual stream are consistent with hierarchical error signals.
    Issa EB; Cadieu CF; DiCarlo JJ
    Elife; 2018 Nov; 7():. PubMed ID: 30484773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Texture Statistics Encoding Model Reveals Hierarchical Feature Selectivity across Human Visual Cortex.
    Henderson MM; Tarr MJ; Wehbe L
    J Neurosci; 2023 May; 43(22):4144-4161. PubMed ID: 37127366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Representation of Maximally Regular Textures in Human Visual Cortex.
    Kohler PJ; Clarke A; Yakovleva A; Liu Y; Norcia AM
    J Neurosci; 2016 Jan; 36(3):714-29. PubMed ID: 26791203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perceptual Texture Dimensions Modulate Neuronal Response Dynamics in Visual Cortical Area V4.
    Kim T; Bair W; Pasupathy A
    J Neurosci; 2022 Jan; 42(4):631-642. PubMed ID: 34862189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual prototypes in the ventral stream are attuned to complexity and gaze behavior.
    Rose O; Johnson J; Wang B; Ponce CR
    Nat Commun; 2021 Nov; 12(1):6723. PubMed ID: 34795262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Posterior Inferotemporal Cortex Cells Use Multiple Input Pathways for Shape Encoding.
    Ponce CR; Lomber SG; Livingstone MS
    J Neurosci; 2017 May; 37(19):5019-5034. PubMed ID: 28416597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A neurocomputational model of decision and confidence in object recognition task.
    Roshan SS; Sadeghnejad N; Sharifizadeh F; Ebrahimpour R
    Neural Netw; 2024 Jul; 175():106318. PubMed ID: 38643618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-Scale, High-Resolution Comparison of the Core Visual Object Recognition Behavior of Humans, Monkeys, and State-of-the-Art Deep Artificial Neural Networks.
    Rajalingham R; Issa EB; Bashivan P; Kar K; Schmidt K; DiCarlo JJ
    J Neurosci; 2018 Aug; 38(33):7255-7269. PubMed ID: 30006365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atoms of recognition in human and computer vision.
    Ullman S; Assif L; Fetaya E; Harari D
    Proc Natl Acad Sci U S A; 2016 Mar; 113(10):2744-9. PubMed ID: 26884200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual Object Recognition: Do We (Finally) Know More Now Than We Did?
    Gauthier I; Tarr MJ
    Annu Rev Vis Sci; 2016 Oct; 2():377-396. PubMed ID: 28532357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling diverse responses to filled and outline shapes in macaque V4.
    Popovkina DV; Bair W; Pasupathy A
    J Neurophysiol; 2019 Mar; 121(3):1059-1077. PubMed ID: 30699004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep convolutional models improve predictions of macaque V1 responses to natural images.
    Cadena SA; Denfield GH; Walker EY; Gatys LA; Tolias AS; Bethge M; Ecker AS
    PLoS Comput Biol; 2019 Apr; 15(4):e1006897. PubMed ID: 31013278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Task context impacts visual object processing differentially across the cortex.
    Harel A; Kravitz DJ; Baker CI
    Proc Natl Acad Sci U S A; 2014 Mar; 111(10):E962-71. PubMed ID: 24567402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Invariant recognition drives neural representations of action sequences.
    Tacchetti A; Isik L; Poggio T
    PLoS Comput Biol; 2017 Dec; 13(12):e1005859. PubMed ID: 29253864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.