These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 24812222)

  • 1. Genome Sequence of Pseudomonas brassicacearum DF41.
    Loewen PC; Switala J; Fernando WG; de Kievit T
    Genome Announc; 2014 May; 2(3):. PubMed ID: 24812222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pseudomonas brassicacearum strain DF41 kills Caenorhabditis elegans through biofilm-dependent and biofilm-independent mechanisms.
    Nandi M; Berry C; Brassinga AK; Belmonte MF; Fernando WG; Loewen PC; de Kievit TR
    Appl Environ Microbiol; 2016 Dec; 82(23):6889-6898. PubMed ID: 27637885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome Sequence of Pseudomonas chlororaphis Strain PA23.
    Loewen PC; Villenueva J; Fernando WG; de Kievit T
    Genome Announc; 2014 Jul; 2(4):. PubMed ID: 25035328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complete genome sequence of
    Zachow C; Müller H; Monk J; Berg G
    Stand Genomic Sci; 2017; 12():6. PubMed ID: 28078051
    [No Abstract]   [Full Text] [Related]  

  • 5. Repression of the antifungal activity of Pseudomonas sp. strain DF41 by the stringent response.
    Manuel J; Berry C; Selin C; Fernando WG; de Kievit TR
    Appl Environ Microbiol; 2011 Aug; 77(16):5635-42. PubMed ID: 21705548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pseudomonas brassicacearum subsp. neoaurantiaca subsp. nov., orange-pigmented bacteria isolated from soil and the rhizosphere of agricultural plants.
    Ivanova EP; Christen R; Bizet C; Clermont D; Motreff L; Bouchier C; Zhukova NV; Crawford RJ; Kiprianova EA
    Int J Syst Evol Microbiol; 2009 Oct; 59(Pt 10):2476-81. PubMed ID: 19622656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complete Genome Sequence of Pseudomonas brassicacearum LBUM300, a Disease-Suppressive Bacterium with Antagonistic Activity toward Fungal, Oomycete, and Bacterial Plant Pathogens.
    Novinscak A; Gadkar VJ; Joly DL; Filion M
    Genome Announc; 2016 Jan; 4(1):. PubMed ID: 26823582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential Response of Wheat Cultivars to Pseudomonas brassicacearum and Take-All Decline Soil.
    Yang M; Mavrodi DV; Thomashow LS; Weller DM
    Phytopathology; 2018 Dec; 108(12):1363-1372. PubMed ID: 29905506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Friend or foe? Exploring the fine line between
    Gislason AS; de Kievit TR
    J Med Microbiol; 2020 Mar; 69(3):347-360. PubMed ID: 31976855
    [No Abstract]   [Full Text] [Related]  

  • 10. Chemical and biological characterization of sclerosin, an antifungal lipopeptide.
    Berry CL; Brassinga AK; Donald LJ; Fernando WG; Loewen PC; de Kievit TR
    Can J Microbiol; 2012 Aug; 58(8):1027-34. PubMed ID: 22838838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complete genome sequence of a beneficial plant root-associated bacterium, Pseudomonas brassicacearum.
    Ortet P; Barakat M; Lalaouna D; Fochesato S; Barbe V; Vacherie B; Santaella C; Heulin T; Achouak W
    J Bacteriol; 2011 Jun; 193(12):3146. PubMed ID: 21515771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pseudomonas kilonensis sp. nov., a bacterium isolated from agricultural soil.
    Sikorski J; Stackebrandt E; Wackernagel W
    Int J Syst Evol Microbiol; 2001 Jul; 51(Pt 4):1549-1555. PubMed ID: 11491357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-infection of a hypovirulent isolate of Sclerotinia sclerotiorum with a new botybirnavirus and a strain of a mitovirus.
    Ran H; Liu L; Li B; Cheng J; Fu Y; Jiang D; Xie J
    Virol J; 2016 Jun; 13():92. PubMed ID: 27267756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Draft Genome Sequence of Pseudomonas brassicacearum Strain UTMN3, a Biological Control Agent from the Rhizosphere of Pisum sativum.
    Poshvina DV; Vasilchenko AV; Vasilchenko AS
    Microbiol Resour Announc; 2021 Nov; 10(45):e0089521. PubMed ID: 34761959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Viruses of the plant pathogenic fungus Sclerotinia sclerotiorum.
    Jiang D; Fu Y; Guoqing L; Ghabrial SA
    Adv Virus Res; 2013; 86():215-48. PubMed ID: 23498908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological control of Sclerotinia sclerotiorum (Lib.) de Bary, the causal agent of white mold, by Pseudomonas species on canola petals.
    Behnam S; Ahmadzadeh M; Sharifi Tehrani A; Hedjaroude GA; Farzaneh M
    Commun Agric Appl Biol Sci; 2007; 72(4):993-6. PubMed ID: 18396840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery of Two Mycoviruses by High-Throughput Sequencing and Assembly of Mycovirus-Derived Small Silencing RNAs From a Hypovirulent Strain of
    Wang Q; Cheng S; Xiao X; Cheng J; Fu Y; Chen T; Jiang D; Xie J
    Front Microbiol; 2019; 10():1415. PubMed ID: 31338072
    [No Abstract]   [Full Text] [Related]  

  • 18. Phenazines are not essential for Pseudomonas chlororaphis PA23 biocontrol of Sclerotinia sclerotiorum, but do play a role in biofilm formation.
    Selin C; Habibian R; Poritsanos N; Athukorala SN; Fernando D; de Kievit TR
    FEMS Microbiol Ecol; 2010 Jan; 71(1):73-83. PubMed ID: 19889032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of Pseudomonas fluorescens P13 to control sclerotinia stem rot (Sclerotinia sclerotiorum) of oilseed rape.
    Li H; Li H; Bai Y; Wang J; Nie M; Li B; Xiao M
    J Microbiol; 2011 Dec; 49(6):884-9. PubMed ID: 22203550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenotypic variation of Pseudomonas brassicacearum as a plant root-colonization strategy.
    Achouak W; Conrod S; Cohen V; Heulin T
    Mol Plant Microbe Interact; 2004 Aug; 17(8):872-9. PubMed ID: 15305608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.