BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 24812662)

  • 1. Air, aqueous and thermal stabilities of Ce3+ ions in cerium oxide nanoparticle layers with substrates.
    Naganuma T; Traversa E
    Nanoscale; 2014 Jun; 6(12):6637-45. PubMed ID: 24812662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability of the Ce3+ valence state in cerium oxide nanoparticle layers.
    Naganuma T; Traversa E
    Nanoscale; 2012 Aug; 4(16):4950-3. PubMed ID: 22791232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable phosphate-mediated stability of Ce
    Naganuma T
    Biomater Sci; 2021 Feb; 9(4):1345-1354. PubMed ID: 33367328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physicochemical and biological interactions between cerium oxide nanoparticles and a 1,8-naphthalimide derivative.
    Pulido-Reyes G; Martín E; Gu Coronado JL; Leganes F; Rosal R; Fernández-Piñas F
    J Photochem Photobiol B; 2017 Jul; 172():61-69. PubMed ID: 28527428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absence of Ce3+ sites in chemically active colloidal ceria nanoparticles.
    Cafun JD; Kvashnina KO; Casals E; Puntes VF; Glatzel P
    ACS Nano; 2013 Dec; 7(12):10726-32. PubMed ID: 24215500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shifts in oxidation states of cerium oxide nanoparticles detected inside intact hydrated cells and organelles.
    Szymanski CJ; Munusamy P; Mihai C; Xie Y; Hu D; Gilles MK; Tyliszczak T; Thevuthasan S; Baer DR; Orr G
    Biomaterials; 2015 Sep; 62():147-54. PubMed ID: 26056725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sm doped mesoporous CeO2 nanocrystals: aqueous solution-based surfactant assisted low temperature synthesis, characterization and their improved autocatalytic activity.
    Mandal B; Mondal A; Ray SS; Kundu A
    Dalton Trans; 2016 Jan; 45(4):1679-92. PubMed ID: 26699084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of cerium valence states at cerium oxide nanoparticle surfaces on cell proliferation.
    Naganuma T; Traversa E
    Biomaterials; 2014 May; 35(15):4441-53. PubMed ID: 24612920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of formaldehyde over Mn(x)Ce(1)-(x)O(2) catalysts: thermal catalytic oxidation versus ozone catalytic oxidation.
    Li JW; Pan KL; Yu SJ; Yan SY; Chang MB
    J Environ Sci (China); 2014 Dec; 26(12):2546-53. PubMed ID: 25499503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Various physicochemical and surface properties controlling the bioactivity of cerium oxide nanoparticles.
    Chen BH; Stephen Inbaraj B
    Crit Rev Biotechnol; 2018 Nov; 38(7):1003-1024. PubMed ID: 29402135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mn-Ce-Co complex oxide nanoparticles: hydrothermal synthesis and their catalytic subcritical oxidation of 4,4'-Dibromobiphenyl.
    Chen J; Xu T; Ding J; Ji Y; Ni P; Li Z
    J Hazard Mater; 2012 Oct; 235-236():85-91. PubMed ID: 22841801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flame synthesis of nanosized Cu-Ce-O, Ni-Ce-O, and Fe-Ce-O catalysts for the water-gas shift (WGS) reaction.
    Pati RK; Lee IC; Hou S; Akhuemonkhan O; Gaskell KJ; Wang Q; Frenkel AI; Chu D; Salamanca-Riba LG; Ehrman SH
    ACS Appl Mater Interfaces; 2009 Nov; 1(11):2624-35. PubMed ID: 20356136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, physico-chemical characterization, and antioxidant effect of PEGylated cerium oxide nanoparticles.
    Xue Y; Balmuri SR; Patel A; Sant V; Sant S
    Drug Deliv Transl Res; 2018 Apr; 8(2):357-367. PubMed ID: 28589454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ce³+ ions determine redox-dependent anti-apoptotic effect of cerium oxide nanoparticles.
    Celardo I; De Nicola M; Mandoli C; Pedersen JZ; Traversa E; Ghibelli L
    ACS Nano; 2011 Jun; 5(6):4537-49. PubMed ID: 21612305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerium oxide nanomaterial with dual antioxidative scavenging potential: Synthesis and characterization.
    Singh S; Kumar U; Gittess D; Sakthivel TS; Babu B; Seal S
    J Biomater Appl; 2021 Nov; 36(5):834-842. PubMed ID: 33910397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability of engineered nanomaterials in complex aqueous matrices: Settling behaviour of CeO2 nanoparticles in natural surface waters.
    Van Koetsem F; Verstraete S; Van der Meeren P; Du Laing G
    Environ Res; 2015 Oct; 142():207-14. PubMed ID: 26164115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The catalytic wet air oxidation reaction of acetic acid with Ti-Ce series catalyst].
    Jiang Z; Fu H; Tan Y
    Huan Jing Ke Xue; 2002 Jan; 23(1):54-7. PubMed ID: 11987406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced moisture resistance of Cu/Ce catalysts for CO oxidation via Plasma-Catalyst interactions.
    Zhang J; Liu Y; Yao X; Shao Q; Xu B; Long C
    Chemosphere; 2020 Dec; 261():127739. PubMed ID: 32717516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of water composition on association of Ag and CeO₂ nanoparticles with aquatic macrophyte Elodea canadensis.
    Van Koetsem F; Xiao Y; Luo Z; Du Laing G
    Environ Sci Pollut Res Int; 2016 Mar; 23(6):5277-87. PubMed ID: 26564182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of temperature on the low-linear energy transfer radiolysis of the ceric-cerous sulfate dosimeter: a Monte Carlo simulation study.
    Kohan LM; Meesungnoen J; Sanguanmith S; Meesat R; Jay-Gerin JP
    Radiat Res; 2014 May; 181(5):495-502. PubMed ID: 24754561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.