These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 24813225)

  • 1. Necrotic regions are absent in fiber-shaped cell aggregates, approximately 100 μm in diameter.
    Takei T; Kitazono J; Tanaka S; Nishimata H; Yoshida M
    Artif Cells Nanomed Biotechnol; 2016; 44(1):62-5. PubMed ID: 24813225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated fabrication of hydrogel microfibers with tunable diameters for controlled cell alignment.
    Yang Y; Liu X; Wei D; Zhong M; Sun J; Guo L; Fan H; Zhang X
    Biofabrication; 2017 Nov; 9(4):045009. PubMed ID: 28976359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nano-/microfiber scaffold for tissue engineering: physical and biological properties.
    Santana BP; Paganotto GF; Nedel F; Piva E; de Carvalho RV; Nör JE; Demarco FF; Carreño NL
    J Biomed Mater Res A; 2012 Nov; 100(11):3051-8. PubMed ID: 22711621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled Fabrication of Bioactive Microfibers for Creating Tissue Constructs Using Microfluidic Techniques.
    Cheng Y; Yu Y; Fu F; Wang J; Shang L; Gu Z; Zhao Y
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1080-6. PubMed ID: 26741731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smooth muscle-like tissue constructs with circumferentially oriented cells formed by the cell fiber technology.
    Hsiao AY; Okitsu T; Onoe H; Kiyosawa M; Teramae H; Iwanaga S; Kazama T; Matsumoto T; Takeuchi S
    PLoS One; 2015; 10(3):e0119010. PubMed ID: 25734774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vascular-like network prepared using hollow hydrogel microfibers.
    Takei T; Kitazono Z; Ozuno Y; Yoshinaga T; Nishimata H; Yoshida M
    J Biosci Bioeng; 2016 Mar; 121(3):336-40. PubMed ID: 26199226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation and verification of macroscopic isotropy of hollow alginate-based microfibers.
    Djomehri S; Zeid H; Yavari A; Mobed-Miremadi M; Youssefi K; Liao-Chan S
    Artif Cells Nanomed Biotechnol; 2015; 43(6):390-7. PubMed ID: 24684489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alginate/polyoxyethylene and alginate/gelatin hydrogels: preparation, characterization, and application in tissue engineering.
    Aroguz AZ; Baysal K; Adiguzel Z; Baysal BM
    Appl Biochem Biotechnol; 2014 May; 173(2):433-48. PubMed ID: 24728760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patterned hydrogel microfibers prepared using multilayered microfluidic devices for guiding network formation of neural cells.
    Kitagawa Y; Naganuma Y; Yajima Y; Yamada M; Seki M
    Biofabrication; 2014 Sep; 6(3):035011. PubMed ID: 24876343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Composite ECM-alginate microfibers produced by microfluidics as scaffolds with biomineralization potential.
    Angelozzi M; Miotto M; Penolazzi L; Mazzitelli S; Keane T; Badylak SF; Piva R; Nastruzzi C
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():141-53. PubMed ID: 26249575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic generation of hollow Ca-alginate microfibers.
    Meng ZJ; Wang W; Xie R; Ju XJ; Liu Z; Chu LY
    Lab Chip; 2016 Jul; 16(14):2673-81. PubMed ID: 27302737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A reactor-like spinneret used in 3D printing alginate hollow fiber: a numerical study of morphological evolution.
    Li Y; Liu Y; Jiang C; Li S; Liang G; Hu Q
    Soft Matter; 2016 Feb; 12(8):2392-9. PubMed ID: 26799402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional printing fiber reinforced hydrogel composites.
    Bakarich SE; Gorkin R; in het Panhuis M; Spinks GM
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):15998-6006. PubMed ID: 25197745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alginate hydrogels as biomaterials.
    Augst AD; Kong HJ; Mooney DJ
    Macromol Biosci; 2006 Aug; 6(8):623-33. PubMed ID: 16881042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Injectable in situ self-cross-linking hydrogels based on poly(L-glutamic acid) and alginate for cartilage tissue engineering.
    Yan S; Wang T; Feng L; Zhu J; Zhang K; Chen X; Cui L; Yin J
    Biomacromolecules; 2014 Dec; 15(12):4495-508. PubMed ID: 25279766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of cell density on mesenchymal stem cells aggregation in RGD-alginate 3D matrices under osteoinductive conditions.
    Maia FR; Lourenço AH; Granja PL; Gonçalves RM; Barrias CC
    Macromol Biosci; 2014 Jun; 14(6):759-71. PubMed ID: 24585449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delivery of alginate-chitosan hydrogel promotes endogenous repair and preserves cardiac function in rats with myocardial infarction.
    Deng B; Shen L; Wu Y; Shen Y; Ding X; Lu S; Jia J; Qian J; Ge J
    J Biomed Mater Res A; 2015 Mar; 103(3):907-18. PubMed ID: 24827141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of stripe-patterned heterogeneous hydrogel sheets using microfluidic devices for high-density coculture of hepatocytes and fibroblasts.
    Kobayashi A; Yamakoshi K; Yajima Y; Utoh R; Yamada M; Seki M
    J Biosci Bioeng; 2013 Dec; 116(6):761-7. PubMed ID: 23845912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alginate-based hydrogels with improved adhesive properties for cell encapsulation.
    Sarker B; Rompf J; Silva R; Lang N; Detsch R; Kaschta J; Fabry B; Boccaccini AR
    Int J Biol Macromol; 2015; 78():72-8. PubMed ID: 25847839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interpenetrating Polymer Networks polysaccharide hydrogels for drug delivery and tissue engineering.
    Matricardi P; Di Meo C; Coviello T; Hennink WE; Alhaique F
    Adv Drug Deliv Rev; 2013 Aug; 65(9):1172-87. PubMed ID: 23603210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.