BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 24813329)

  • 21. Microencapsulation-based cell therapies.
    Marikar SN; El-Osta A; Johnston A; Such G; Al-Hasani K
    Cell Mol Life Sci; 2022 Jun; 79(7):351. PubMed ID: 35674842
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glassy-like Metal Oxide Particles Embedded on Micrometer Thicker Alginate Films as Promising Wound Healing Nanomaterials.
    Kędzierska M; Hammi N; Kolodziejczyk-Czepas J; Katir N; Bryszewska M; Milowska K; El Kadib A
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628396
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanical and physicochemical behavior of a 3D hydrogel scaffold during cell growth and proliferation.
    Rivero RE; Capella V; Cecilia Liaudat A; Bosch P; Barbero CA; Rodríguez N; Rivarola CR
    RSC Adv; 2020 Feb; 10(10):5827-5837. PubMed ID: 35497440
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reductionist Three-Dimensional Tumor Microenvironment Models in Synthetic Hydrogels.
    Katz RR; West JL
    Cancers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267532
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tumor Microenvironment and Hydrogel-Based 3D Cancer Models for In Vitro Testing Immunotherapies.
    Vitale C; Marzagalli M; Scaglione S; Dondero A; Bottino C; Castriconi R
    Cancers (Basel); 2022 Feb; 14(4):. PubMed ID: 35205760
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparative study of mesenchymal stem cells cultured as cell-only aggregates and in encapsulated hydrogels.
    Passanha FR; Gomes DB; Piotrowska J; ; Moroni L; Baker MB; LaPointe VLS
    J Tissue Eng Regen Med; 2022 Jan; 16(1):14-25. PubMed ID: 34655456
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three Polymers from the Sea: Unique Structures, Directional Modifications, and Medical Applications.
    Wang L; Li W; Qin S
    Polymers (Basel); 2021 Jul; 13(15):. PubMed ID: 34372087
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neuronal Differentiation from Induced Pluripotent Stem Cell-Derived Neurospheres by the Application of Oxidized Alginate-Gelatin-Laminin Hydrogels.
    Distler T; Lauria I; Detsch R; Sauter CM; Bendt F; Kapr J; Rütten S; Boccaccini AR; Fritsche E
    Biomedicines; 2021 Mar; 9(3):. PubMed ID: 33808044
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D bioprinting of hepatocytes: core-shell structured co-cultures with fibroblasts for enhanced functionality.
    Taymour R; Kilian D; Ahlfeld T; Gelinsky M; Lode A
    Sci Rep; 2021 Mar; 11(1):5130. PubMed ID: 33664366
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential Responses to Bioink-Induced Oxidative Stress in Endothelial Cells and Fibroblasts.
    Genç H; Hazur J; Karakaya E; Dietel B; Bider F; Groll J; Alexiou C; Boccaccini AR; Detsch R; Cicha I
    Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33652991
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Review on the Adaption of Alginate-Gelatin Hydrogels for 3D Cultures and Bioprinting.
    Łabowska MB; Cierluk K; Jankowska AM; Kulbacka J; Detyna J; Michalak I
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33579053
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strategies to Functionalize the Anionic Biopolymer Na-Alginate without Restricting Its Polyelectrolyte Properties.
    Szabó L; Gerber-Lemaire S; Wandrey C
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32326625
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cell-laden alginate dialdehyde-gelatin hydrogels formed in 3D printed sacrificial gel.
    Dranseikiene D; Schrüfer S; Schubert DW; Reakasame S; Boccaccini AR
    J Mater Sci Mater Med; 2020 Mar; 31(3):31. PubMed ID: 32152812
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling the Tumor Microenvironment and Pathogenic Signaling in Bone Sarcoma.
    Molina ER; Chim LK; Barrios S; Ludwig JA; Mikos AG
    Tissue Eng Part B Rev; 2020 Jun; 26(3):249-271. PubMed ID: 32057288
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enzymatically crosslinked silk and silk-gelatin hydrogels with tunable gelation kinetics, mechanical properties and bioactivity for cell culture and encapsulation.
    Hasturk O; Jordan KE; Choi J; Kaplan DL
    Biomaterials; 2020 Feb; 232():119720. PubMed ID: 31896515
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tumor Cells Develop Defined Cellular Phenotypes After 3D-Bioprinting in Different Bioinks.
    Schmidt SK; Schmid R; Arkudas A; Kengelbach-Weigand A; Bosserhoff AK
    Cells; 2019 Oct; 8(10):. PubMed ID: 31652536
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Natural Polymers for Organ 3D Bioprinting.
    Liu F; Chen Q; Liu C; Ao Q; Tian X; Fan J; Tong H; Wang X
    Polymers (Basel); 2018 Nov; 10(11):. PubMed ID: 30961203
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An RGD-Containing Peptide Derived from Wild Silkworm Silk Fibroin Promotes Cell Adhesion and Spreading.
    Kang Z; Wang Y; Xu J; Song G; Ding M; Zhao H; Wang J
    Polymers (Basel); 2018 Oct; 10(11):. PubMed ID: 30961118
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Encapsulation of Rat Bone Marrow Derived Mesenchymal Stem Cells in Alginate Dialdehyde/Gelatin Microbeads with and without Nanoscaled Bioactive Glass for In Vivo Bone Tissue Engineering.
    Rottensteiner-Brandl U; Detsch R; Sarker B; Lingens L; Köhn K; Kneser U; Bosserhoff AK; Horch RE; Boccaccini AR; Arkudas A
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30275427
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tyramine-conjugated alginate hydrogels as a platform for bioactive scaffolds.
    Schulz A; Gepp MM; Stracke F; von Briesen H; Neubauer JC; Zimmermann H
    J Biomed Mater Res A; 2019 Jan; 107(1):114-121. PubMed ID: 30256518
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.