BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 24813373)

  • 1. Hypothesis-driven weight of evidence analysis to determine potential endocrine activity of MTBE.
    de Peyster A; Mihaich E
    Regul Toxicol Pharmacol; 2014 Aug; 69(3):348-70. PubMed ID: 24813373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypothesis-driven weight-of-evidence analysis of endocrine disruption potential: a case study with triclosan.
    Mihaich E; Capdevielle M; Urbach-Ross D; Slezak B
    Crit Rev Toxicol; 2017 Apr; 47(4):263-285. PubMed ID: 28128023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relevance weighting of tier 1 endocrine screening endpoints by rank order.
    Borgert CJ; Stuchal LD; Mihaich EM; Becker RA; Bentley KS; Brausch JM; Coady K; Geter DR; Gordon E; Guiney PD; Hess F; Holmes CM; LeBaron MJ; Levine S; Marty S; Mukhi S; Neal BH; Ortego LS; Saltmiras DA; Snajdr S; Staveley J; Tobia A
    Birth Defects Res B Dev Reprod Toxicol; 2014 Feb; 101(1):90-113. PubMed ID: 24510745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hypothesis-driven weight-of-evidence analysis to evaluate potential endocrine activity of perfluorohexanoic acid.
    Borghoff SJ; Fitch S; Rager JE; Huggett D
    Regul Toxicol Pharmacol; 2018 Nov; 99():168-181. PubMed ID: 30240830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypothesis-driven weight of evidence framework for evaluating data within the US EPA's Endocrine Disruptor Screening Program.
    Borgert CJ; Mihaich EM; Ortego LS; Bentley KS; Holmes CM; Levine SL; Becker RA
    Regul Toxicol Pharmacol; 2011 Nov; 61(2):185-91. PubMed ID: 21803110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypothesis-driven weight-of-evidence analysis for the endocrine disruption potential of benzene.
    Mihaich EM; Borgert CJ
    Regul Toxicol Pharmacol; 2018 Dec; 100():7-15. PubMed ID: 30273620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Weight-of-the-evidence evaluation of 2,4-D potential for interactions with the estrogen, androgen and thyroid pathways and steroidogenesis.
    Neal BH; Bus J; Marty MS; Coady K; Williams A; Staveley J; Lamb JC
    Crit Rev Toxicol; 2017 May; 47(5):345-401. PubMed ID: 28303741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methyl tertiary butyl ether-induced endocrine alterations in mice are not mediated through the estrogen receptor.
    Moser GJ; Wolf DC; Sar M; Gaido KW; Janszen D; Goldsworthy TL
    Toxicol Sci; 1998 Jan; 41(1):77-87. PubMed ID: 9520343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developing scientific confidence in HTS-derived prediction models: lessons learned from an endocrine case study.
    Cox LA; Popken D; Marty MS; Rowlands JC; Patlewicz G; Goyak KO; Becker RA
    Regul Toxicol Pharmacol; 2014 Aug; 69(3):443-50. PubMed ID: 24845243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chlorpyrifos: weight of evidence evaluation of potential interaction with the estrogen, androgen, or thyroid pathways.
    Juberg DR; Gehen SC; Coady KK; LeBaron MJ; Kramer VJ; Lu H; Marty MS
    Regul Toxicol Pharmacol; 2013 Aug; 66(3):249-63. PubMed ID: 23524272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mind the gap: Concerns using endpoints from endocrine screening assays in risk assessment.
    Wheeler JR; Weltje L; Green RM
    Regul Toxicol Pharmacol; 2014 Aug; 69(3):289-95. PubMed ID: 24887212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypothesis-driven weight of evidence evaluation indicates styrene lacks endocrine disruption potential.
    Borgert CJ
    Crit Rev Toxicol; 2023 Feb; 53(2):53-68. PubMed ID: 37216681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screening chemicals for thyroid-disrupting activity: A critical comparison of mammalian and amphibian models.
    Pickford DB
    Crit Rev Toxicol; 2010 Nov; 40(10):845-92. PubMed ID: 20684730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methyl tertiary-butyl ether mode of action for cancer endpoints in rodents.
    Cruzan G; Borghoff SJ; de Peyster A; Hard GC; McClain M; McGregor DB; Thomas MG
    Regul Toxicol Pharmacol; 2007 Mar; 47(2):156-65. PubMed ID: 17084497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methyl tertiary-butyl ether: studies for potential human health hazards.
    McGregor D
    Crit Rev Toxicol; 2006 Apr; 36(4):319-58. PubMed ID: 16809102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing utility of thyroid in vitro screening assays through comparisons to observed impacts in vivo.
    Eytcheson SA; Olker JH; Friedman KP; Hornung MW; Degitz SJ
    Regul Toxicol Pharmacol; 2023 Oct; 144():105491. PubMed ID: 37666444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New insights into the endocrine disrupting effects of brominated flame retardants.
    Legler J
    Chemosphere; 2008 Sep; 73(2):216-22. PubMed ID: 18667224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pronamide: Weight of evidence for potential estrogen, androgen or thyroid effects.
    Marty MS; Papineni S; Coady KK; Rasoulpour RJ; Pottenger LH; Eisenbrandt DL
    Regul Toxicol Pharmacol; 2015 Jul; 72(2):405-22. PubMed ID: 25846366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental effect assessment for sexual endocrine-disrupting chemicals: Fish testing strategy.
    Knacker T; Boettcher M; Frische T; Rufli H; Stolzenberg HC; Teigeler M; Zok S; Braunbeck T; Schäfers C
    Integr Environ Assess Manag; 2010 Oct; 6(4):653-62. PubMed ID: 20872646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biotransformation of 12C- and 2-13C-labeled methyl tert-butyl ether, ethyl tert-butyl ether, and tert-butyl alcohol in rats: identification of metabolites in urine by 13C nuclear magnetic resonance and gas chromatography/mass spectrometry.
    Bernauer U; Amberg A; Scheutzow D; Dekant W
    Chem Res Toxicol; 1998 Jun; 11(6):651-8. PubMed ID: 9625733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.