BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 24813725)

  • 21. Rice SPX6 negatively regulates the phosphate starvation response through suppression of the transcription factor PHR2.
    Zhong Y; Wang Y; Guo J; Zhu X; Shi J; He Q; Liu Y; Wu Y; Zhang L; Lv Q; Mao C
    New Phytol; 2018 Jul; 219(1):135-148. PubMed ID: 29658119
    [TBL] [Abstract][Full Text] [Related]  

  • 22. OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice.
    Zhang L; Hu B; Li W; Che R; Deng K; Li H; Yu F; Ling H; Li Y; Chu C
    New Phytol; 2014 Mar; 201(4):1183-1191. PubMed ID: 24491113
    [TBL] [Abstract][Full Text] [Related]  

  • 23. OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice.
    Yi K; Wu Z; Zhou J; Du L; Guo L; Wu Y; Wu P
    Plant Physiol; 2005 Aug; 138(4):2087-96. PubMed ID: 16006597
    [TBL] [Abstract][Full Text] [Related]  

  • 24. OsIPK2, a Rice Inositol Polyphosphate Kinase Gene, Is Involved in Phosphate Homeostasis and Root Development.
    Chen Y; Han J; Wang X; Chen X; Li Y; Yuan C; Dong J; Yang Q; Wang P
    Plant Cell Physiol; 2023 Aug; 64(8):893-905. PubMed ID: 37233621
    [TBL] [Abstract][Full Text] [Related]  

  • 25. OsPHT1;3 Mediates Uptake, Translocation, and Remobilization of Phosphate under Extremely Low Phosphate Regimes.
    Chang MX; Gu M; Xia YW; Dai XL; Dai CR; Zhang J; Wang SC; Qu HY; Yamaji N; Feng Ma J; Xu GH
    Plant Physiol; 2019 Feb; 179(2):656-670. PubMed ID: 30567970
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Small GTPase, OsRab6a, is Involved in the Regulation of Iron Homeostasis in Rice.
    Yang A; Zhang WH
    Plant Cell Physiol; 2016 Jun; 57(6):1271-80. PubMed ID: 27257291
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Overexpression of OsPHR3 improves growth traits and facilitates nitrogen use efficiency under low phosphate condition.
    Sun Y; Hu Z; Wang X; Shen X; Hu S; Yan Y; Kant S; Xu G; Xue Y; Sun S
    Plant Physiol Biochem; 2021 Sep; 166():712-722. PubMed ID: 34214781
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improvement in phosphate acquisition and utilization by a secretory purple acid phosphatase (OsPAP21b) in rice.
    Mehra P; Pandey BK; Giri J
    Plant Biotechnol J; 2017 Aug; 15(8):1054-1067. PubMed ID: 28116829
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Involvement of OsSPX1 in phosphate homeostasis in rice.
    Wang C; Ying S; Huang H; Li K; Wu P; Shou H
    Plant J; 2009 Mar; 57(5):895-904. PubMed ID: 19000161
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Overexpression of
    Sun H; Guo X; Xu F; Wu D; Zhang X; Lou M; Luo F; Xu G; Zhang Y
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31627334
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Root transcriptome of two contrasting indica rice cultivars uncovers regulators of root development and physiological responses.
    Singh A; Kumar P; Gautam V; Rengasamy B; Adhikari B; Udayakumar M; Sarkar AK
    Sci Rep; 2016 Dec; 6():39266. PubMed ID: 28000793
    [TBL] [Abstract][Full Text] [Related]  

  • 32. OsARF16 is involved in cytokinin-mediated inhibition of phosphate transport and phosphate signaling in rice (Oryza sativa L.).
    Shen C; Yue R; Yang Y; Zhang L; Sun T; Tie S; Wang H
    PLoS One; 2014; 9(11):e112906. PubMed ID: 25386911
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distribution of phenanthrene in the ospho2 reveals the involvement of phosphate on phenanthrene translocation and accumulation in rice.
    Wang X; Jain A; Cui M; Hu S; Zhao G; Cao Y; Hu F
    Ecotoxicol Environ Saf; 2022 Jul; 240():113685. PubMed ID: 35636234
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice.
    Wu Z; Ren H; McGrath SP; Wu P; Zhao FJ
    Plant Physiol; 2011 Sep; 157(1):498-508. PubMed ID: 21715673
    [TBL] [Abstract][Full Text] [Related]  

  • 35. OsARF16, a transcription factor, is required for auxin and phosphate starvation response in rice (Oryza sativa L.).
    Shen C; Wang S; Zhang S; Xu Y; Qian Q; Qi Y; Jiang de A
    Plant Cell Environ; 2013 Mar; 36(3):607-20. PubMed ID: 22913536
    [TBL] [Abstract][Full Text] [Related]  

  • 36. TaZAT8, a C2H2-ZFP type transcription factor gene in wheat, plays critical roles in mediating tolerance to Pi deprivation through regulating P acquisition, ROS homeostasis and root system establishment.
    Ding W; Wang Y; Fang W; Gao S; Li X; Xiao K
    Physiol Plant; 2016 Nov; 158(3):297-311. PubMed ID: 27194419
    [TBL] [Abstract][Full Text] [Related]  

  • 37. miR444a has multiple functions in the rice nitrate-signaling pathway.
    Yan Y; Wang H; Hamera S; Chen X; Fang R
    Plant J; 2014 Apr; 78(1):44-55. PubMed ID: 24460537
    [TBL] [Abstract][Full Text] [Related]  

  • 38. OsMYB103L, an R2R3-MYB transcription factor, influences leaf rolling and mechanical strength in rice (Oryza sativa L.).
    Yang C; Li D; Liu X; Ji C; Hao L; Zhao X; Li X; Chen C; Cheng Z; Zhu L
    BMC Plant Biol; 2014 Jun; 14():158. PubMed ID: 24906444
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of OsPT8 in arsenate uptake and varietal difference in arsenate tolerance in rice.
    Wang P; Zhang W; Mao C; Xu G; Zhao FJ
    J Exp Bot; 2016 Nov; 67(21):6051-6059. PubMed ID: 27683727
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The MYB-CC Transcription Factor PHOSPHATE STARVATION RESPONSE-LIKE 7 (PHL7) Functions in Phosphate Homeostasis and Affects Salt Stress Tolerance in Rice.
    Yang WT; Bae KD; Lee SW; Jung KH; Moon S; Basnet P; Choi IY; Um T; Kim DH
    Plants (Basel); 2024 Feb; 13(5):. PubMed ID: 38475483
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.