These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 24813725)

  • 41. Mutation of
    Ai H; Liu X; Hu Z; Cao Y; Kong N; Gao F; Hu S; Shen X; Huang X; Xu G; Sun S
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768758
    [No Abstract]   [Full Text] [Related]  

  • 42. Transcriptional regulation of phosphate acquisition by higher plants.
    Jain A; Nagarajan VK; Raghothama KG
    Cell Mol Life Sci; 2012 Oct; 69(19):3207-24. PubMed ID: 22899310
    [TBL] [Abstract][Full Text] [Related]  

  • 43. OsSIZ1, a SUMO E3 Ligase Gene, is Involved in the Regulation of the Responses to Phosphate and Nitrogen in Rice.
    Wang H; Sun R; Cao Y; Pei W; Sun Y; Zhou H; Wu X; Zhang F; Luo L; Shen Q; Xu G; Sun S
    Plant Cell Physiol; 2015 Dec; 56(12):2381-95. PubMed ID: 26615033
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A receptor-like protein RMC is involved in regulation of iron acquisition in rice.
    Yang A; Li Y; Xu Y; Zhang WH
    J Exp Bot; 2013 Nov; 64(16):5009-20. PubMed ID: 24014863
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Overexpression of the nitrate transporter, OsNRT2.3b, improves rice phosphorus uptake and translocation.
    Feng H; Li B; Zhi Y; Chen J; Li R; Xia X; Xu G; Fan X
    Plant Cell Rep; 2017 Aug; 36(8):1287-1296. PubMed ID: 28502056
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transcription factor OsNAC016 negatively regulates phosphate-starvation response in rice.
    Sun Y; Wu Q; Xie Z; Huang J
    Plant Sci; 2023 Apr; 329():111618. PubMed ID: 36738935
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ectopic expression of R3 MYB transcription factor gene OsTCL1 in Arabidopsis, but not rice, affects trichome and root hair formation.
    Zheng K; Tian H; Hu Q; Guo H; Yang L; Cai L; Wang X; Liu B; Wang S
    Sci Rep; 2016 Jan; 6():19254. PubMed ID: 26758286
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spatio-temporal transcript profiling of rice roots and shoots in response to phosphate starvation and recovery.
    Secco D; Jabnoune M; Walker H; Shou H; Wu P; Poirier Y; Whelan J
    Plant Cell; 2013 Nov; 25(11):4285-304. PubMed ID: 24249833
    [TBL] [Abstract][Full Text] [Related]  

  • 49. OsWRKY21 and OsWRKY108 function redundantly to promote phosphate accumulation through maintaining the constitutive expression of OsPHT1;1 under phosphate-replete conditions.
    Zhang J; Gu M; Liang R; Shi X; Chen L; Hu X; Wang S; Dai X; Qu H; Li H; Xu G
    New Phytol; 2021 Feb; 229(3):1598-1614. PubMed ID: 32936937
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The ferroxidase LPR5 functions in the maintenance of phosphate homeostasis and is required for normal growth and development of rice.
    Ai H; Cao Y; Jain A; Wang X; Hu Z; Zhao G; Hu S; Shen X; Yan Y; Liu X; Sun Y; Lan X; Xu G; Sun S
    J Exp Bot; 2020 Aug; 71(16):4828-4842. PubMed ID: 32618334
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molecular interaction between PHO2 and GIGANTEA reveals a new crosstalk between flowering time and phosphate homeostasis in Oryza sativa.
    Li S; Ying Y; Secco D; Wang C; Narsai R; Whelan J; Shou H
    Plant Cell Environ; 2017 Aug; 40(8):1487-1499. PubMed ID: 28337762
    [TBL] [Abstract][Full Text] [Related]  

  • 52. LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice.
    Hu B; Zhu C; Li F; Tang J; Wang Y; Lin A; Liu L; Che R; Chu C
    Plant Physiol; 2011 Jul; 156(3):1101-15. PubMed ID: 21317339
    [TBL] [Abstract][Full Text] [Related]  

  • 53.
    Ye Y; Li P; Xu T; Zeng L; Cheng D; Yang M; Luo J; Lian X
    Front Plant Sci; 2017; 8():2197. PubMed ID: 29312424
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of the rice PHO1 gene family reveals a key role for OsPHO1;2 in phosphate homeostasis and the evolution of a distinct clade in dicotyledons.
    Secco D; Baumann A; Poirier Y
    Plant Physiol; 2010 Mar; 152(3):1693-704. PubMed ID: 20081045
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phosphate starvation induced OsPHR4 mediates Pi-signaling and homeostasis in rice.
    Ruan W; Guo M; Wu P; Yi K
    Plant Mol Biol; 2017 Feb; 93(3):327-340. PubMed ID: 27878661
    [TBL] [Abstract][Full Text] [Related]  

  • 56. OsbHLH6 interacts with OsSPX4 and regulates the phosphate starvation response in rice.
    He Q; Lu H; Guo H; Wang Y; Zhao P; Li Y; Wang F; Xu J; Mo X; Mao C
    Plant J; 2021 Feb; 105(3):649-667. PubMed ID: 33128314
    [TBL] [Abstract][Full Text] [Related]  

  • 57. OsPHF1 regulates the plasma membrane localization of low- and high-affinity inorganic phosphate transporters and determines inorganic phosphate uptake and translocation in rice.
    Chen J; Liu Y; Ni J; Wang Y; Bai Y; Shi J; Gan J; Wu Z; Wu P
    Plant Physiol; 2011 Sep; 157(1):269-78. PubMed ID: 21753117
    [TBL] [Abstract][Full Text] [Related]  

  • 58. OsPAP26 Encodes a Major Purple Acid Phosphatase and Regulates Phosphate Remobilization in Rice.
    Gao W; Lu L; Qiu W; Wang C; Shou H
    Plant Cell Physiol; 2017 May; 58(5):885-892. PubMed ID: 28371895
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The paralogous SPX3 and SPX5 genes redundantly modulate Pi homeostasis in rice.
    Shi J; Hu H; Zhang K; Zhang W; Yu Y; Wu Z; Wu P
    J Exp Bot; 2014 Mar; 65(3):859-70. PubMed ID: 24368504
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of the PHOSPHATE RESPONSE 2-dependent and -independent Pi-starvation response secretome in rice.
    Du Z; Deng S; Wu Z; Cai H; Xu F; Shi L; Wang S; Ding G; Wang C
    J Exp Bot; 2022 Nov; 73(19):6955-6970. PubMed ID: 35994773
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.