BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 24813747)

  • 61. Synthesis, characterization, and gene transfer application of poly(ethylene glycol-b-ethylenimine) with high molar mass polyamine block.
    Brissault B; Kichler A; Leborgne C; Danos O; Cheradame H; Gau J; Auvray L; Guis C
    Biomacromolecules; 2006 Oct; 7(10):2863-70. PubMed ID: 17025363
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Biodegradable and biocompatible multi-arm star amphiphilic block copolymer as a carrier for hydrophobic drug delivery.
    Aryal S; Prabaharan M; Pilla S; Gong S
    Int J Biol Macromol; 2009 May; 44(4):346-52. PubMed ID: 19428465
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Synthesis, characterization, and in vivo evaluation of poly(ethylene oxide-co-glycidol)-platinate conjugate.
    Zhou P; Li Z; Chau Y
    Eur J Pharm Sci; 2010 Nov; 41(3-4):464-72. PubMed ID: 20709170
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Use of polyglycerol (PG), instead of polyethylene glycol (PEG), prevents induction of the accelerated blood clearance phenomenon against long-circulating liposomes upon repeated administration.
    Abu Lila AS; Nawata K; Shimizu T; Ishida T; Kiwada H
    Int J Pharm; 2013 Nov; 456(1):235-42. PubMed ID: 23928149
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Influence of polymer architecture on antigens camouflage, CD47 protection and complement mediated lysis of surface grafted red blood cells.
    Chapanian R; Constantinescu I; Rossi NA; Medvedev N; Brooks DE; Scott MD; Kizhakkedathu JN
    Biomaterials; 2012 Nov; 33(31):7871-83. PubMed ID: 22840223
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Linear Polyglycerol for N-terminal-selective Modification of Interleukin-4.
    Tully M; Hauptstein N; Licha K; Meinel L; Lühmann T; Haag R
    J Pharm Sci; 2022 Jun; 111(6):1642-1651. PubMed ID: 34728175
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Synthesis of degradable poly(L-lactide-co-ethylene glycol) porous tubes by liquid-liquid centrifugal casting for use as nerve guidance channels.
    Goraltchouk A; Freier T; Shoichet MS
    Biomaterials; 2005 Dec; 26(36):7555-63. PubMed ID: 16005955
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Catechol-initiated polyethers: multifunctional hydrophilic ligands for PEGylation and functionalization of metal oxide nanoparticles.
    Wilms VS; Bauer H; Tonhauser C; Schilmann AM; Müller MC; Tremel W; Frey H
    Biomacromolecules; 2013 Jan; 14(1):193-9. PubMed ID: 23210706
    [TBL] [Abstract][Full Text] [Related]  

  • 69. PEG-PLA block copolymer as potential drug carrier: preparation and characterization.
    Ben-Shabat S; Kumar N; Domb AJ
    Macromol Biosci; 2006 Dec; 6(12):1019-25. PubMed ID: 17128420
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Molecular dynamics simulation studies of hyperbranched polyglycerols and their encapsulation behaviors of small drug molecules.
    Yu C; Ma L; Li K; Li S; Liu Y; Zhou Y; Yan D
    Phys Chem Chem Phys; 2016 Aug; 18(32):22446-57. PubMed ID: 27465863
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Synthetic protein targeting by the intrinsic biorecognition functionality of poly(ethylene glycol) using PEG antibodies as biohybrid molecular adaptors.
    Hyotyla JT; Deng J; Lim RY
    ACS Nano; 2011 Jun; 5(6):5180-7. PubMed ID: 21627081
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Novel functional hyperbranched polyether polyols as prospective drug delivery systems.
    Tziveleka LA; Kontoyianni C; Sideratou Z; Tsiourvas D; Paleos CM
    Macromol Biosci; 2006 Feb; 6(2):161-9. PubMed ID: 16456875
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Poly(citric acid)-block-poly(ethylene glycol) copolymers--new biocompatible hybrid materials for nanomedicine.
    Naeini AT; Adeli M; Vossoughi M
    Nanomedicine; 2010 Aug; 6(4):556-62. PubMed ID: 20074665
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Hyperbranched amphiphilic polymer with folate mediated targeting property.
    Zhang L; Hu CH; Cheng SX; Zhuo RX
    Colloids Surf B Biointerfaces; 2010 Sep; 79(2):427-33. PubMed ID: 20537873
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Phosphonylation Controls the Protein Corona of Multifunctional Polyglycerol-Modified Nanocarriers.
    Danner AK; Schöttler S; Alexandrino E; Hammer S; Landfester K; Mailänder V; Morsbach S; Frey H; Wurm FR
    Macromol Biosci; 2019 May; 19(5):e1800468. PubMed ID: 30913379
    [TBL] [Abstract][Full Text] [Related]  

  • 76. In-situ formation of biodegradable hydrogels by stereocomplexation of PEG-(PLLA)8 and PEG-(PDLA)8 star block copolymers.
    Hiemstra C; Zhong Z; Li L; Dijkstra PJ; Feijen J
    Biomacromolecules; 2006 Oct; 7(10):2790-5. PubMed ID: 17025354
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Biodegradable polyglycerols with randomly distributed ketal groups as multi-functional drug delivery systems.
    Shenoi RA; Lai BF; Imran ul-haq M; Brooks DE; Kizhakkedathu JN
    Biomaterials; 2013 Aug; 34(25):6068-81. PubMed ID: 23688604
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Branched Acid-Degradable, Biocompatible Polyether Copolymers via Anionic Ring-Opening Polymerization Using an Epoxide Inimer.
    Tonhauser C; Schüll C; Dingels C; Frey H
    ACS Macro Lett; 2012 Sep; 1(9):1094-1097. PubMed ID: 35607173
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Biodegradable interpolyelectrolyte complexes based on methoxy poly(ethylene glycol)-b-poly(alpha,L-glutamic acid) and chitosan.
    Luo K; Yin J; Song Z; Cui L; Cao B; Chen X
    Biomacromolecules; 2008 Oct; 9(10):2653-61. PubMed ID: 18754685
    [TBL] [Abstract][Full Text] [Related]  

  • 80.
    Pagnacco CA; Kravicz MH; Sica FS; Fontanini V; González de San Román E; Lund R; Re F; Barroso-Bujans F
    Biomacromolecules; 2024 Jun; 25(6):3583-3595. PubMed ID: 38703359
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.