These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 24813894)

  • 1. High-resolution mapping of protein concentration reveals principles of proteome architecture and adaptation.
    Levy ED; Kowarzyk J; Michnick SW
    Cell Rep; 2014 May; 7(4):1333-40. PubMed ID: 24813894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reproducibility of combinatorial peptide ligand libraries for proteome capture evaluated by selected reaction monitoring.
    Di Girolamo F; Righetti PG; Soste M; Feng Y; Picotti P
    J Proteomics; 2013 Aug; 89():215-26. PubMed ID: 23747450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Status of complete proteome analysis by mass spectrometry: SILAC labeled yeast as a model system.
    de Godoy LM; Olsen JV; de Souza GA; Li G; Mortensen P; Mann M
    Genome Biol; 2006; 7(6):R50. PubMed ID: 16784548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise.
    Newman JR; Ghaemmaghami S; Ihmels J; Breslow DK; Noble M; DeRisi JL; Weissman JS
    Nature; 2006 Jun; 441(7095):840-6. PubMed ID: 16699522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic analysis of Saccharomyces cerevisiae.
    Pham TK; Wright PC
    Expert Rev Proteomics; 2007 Dec; 4(6):793-813. PubMed ID: 18067417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The diversity of protein turnover and abundance under nitrogen-limited steady-state conditions in Saccharomyces cerevisiae.
    Helbig AO; Daran-Lapujade P; van Maris AJ; de Hulster EA; de Ridder D; Pronk JT; Heck AJ; Slijper M
    Mol Biosyst; 2011 Dec; 7(12):3316-26. PubMed ID: 21984188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo quantification of protein-protein interactions in Saccharomyces cerevisiae using bimolecular fluorescence complementation assay.
    Sung MK; Huh WK
    J Microbiol Methods; 2010 Nov; 83(2):194-201. PubMed ID: 20828586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high-accuracy consensus map of yeast protein complexes reveals modular nature of gene essentiality.
    Hart GT; Lee I; Marcotte ER
    BMC Bioinformatics; 2007 Jul; 8():236. PubMed ID: 17605818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted proteome analysis of single-gene deletion strains of Saccharomyces cerevisiae lacking enzymes in the central carbon metabolism.
    Matsuda F; Kinoshita S; Nishino S; Tomita A; Shimizu H
    PLoS One; 2017; 12(2):e0172742. PubMed ID: 28241048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteome-wide quantitative multiplexed profiling of protein expression: carbon-source dependency in Saccharomyces cerevisiae.
    Paulo JA; O'Connell JD; Gaun A; Gygi SP
    Mol Biol Cell; 2015 Nov; 26(22):4063-74. PubMed ID: 26399295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping the Saccharomyces cerevisiae Spatial Proteome with High Resolution Using hyperLOPIT.
    Nightingale DJH; Oliver SG; Lilley KS
    Methods Mol Biol; 2019; 2049():165-190. PubMed ID: 31602611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localizing the proteome.
    Simpson JC; Pepperkok R
    Genome Biol; 2003; 4(12):240. PubMed ID: 14659010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Playing tag with the yeast proteome.
    Andrews BJ; Bader GD; Boone C
    Nat Biotechnol; 2003 Nov; 21(11):1297-9. PubMed ID: 14595360
    [No Abstract]   [Full Text] [Related]  

  • 14. Proteomics and systems biology to tackle biological complexity: Yeast as a case study.
    Alberghina L; Cirulli C
    Proteomics; 2010 Dec; 10(24):4337-41. PubMed ID: 21061424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel single-cell screening platform reveals proteome plasticity during yeast stress responses.
    Breker M; Gymrek M; Schuldiner M
    J Cell Biol; 2013 Mar; 200(6):839-50. PubMed ID: 23509072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yeast expression proteomics by high-resolution mass spectrometry.
    Walther TC; Olsen JV; Mann M
    Methods Enzymol; 2010; 470():259-80. PubMed ID: 20946814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of D10-Leu metabolic labeling coupled with MALDI-MS analysis in studying the response of the yeast proteome to H2O2 challenge.
    Jiang H; English AM
    J Proteome Res; 2006 Oct; 5(10):2539-46. PubMed ID: 17022625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enabling technologies for yeast proteome analysis.
    Rees J; Lilley K
    Methods Mol Biol; 2011; 759():149-78. PubMed ID: 21863487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determinants and Regulation of Protein Turnover in Yeast.
    Martin-Perez M; Villén J
    Cell Syst; 2017 Sep; 5(3):283-294.e5. PubMed ID: 28918244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast.
    de Godoy LM; Olsen JV; Cox J; Nielsen ML; Hubner NC; Fröhlich F; Walther TC; Mann M
    Nature; 2008 Oct; 455(7217):1251-4. PubMed ID: 18820680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.