These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 24813963)

  • 21. Design, fabrication and analysis of stagnation flow microreactors used to study hypergolic reactions.
    Saksena P; Tadigadapa S; Yetter RA
    Lab Chip; 2015 May; 15(10):2248-57. PubMed ID: 25854810
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of organic acids and initial solution pH on photocatalytic degradation of bisphenol A (BPA) in a photo-Fenton-like process using goethite (α-FeOOH).
    Zhang G; Wang Q; Zhang W; Li T; Yuan Y; Wang P
    Photochem Photobiol Sci; 2016 Aug; 15(8):1046-53. PubMed ID: 27436621
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New insights into the photocatalytic activity of 3-D core-shell P25@silica nanocomposites: impact of mesoporous coating.
    Gong Y; Wang DP; Wu R; Gazi S; Soo HS; Sritharan T; Chen Z
    Dalton Trans; 2017 Apr; 46(15):4994-5002. PubMed ID: 28350021
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lanthanide Photocatalysis.
    Qiao Y; Schelter EJ
    Acc Chem Res; 2018 Nov; 51(11):2926-2936. PubMed ID: 30335356
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accelerated gas-liquid visible light photoredox catalysis with continuous-flow photochemical microreactors.
    Straathof NJ; Su Y; Hessel V; Noël T
    Nat Protoc; 2016 Jan; 11(1):10-21. PubMed ID: 26633128
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reaction kinetics of dye decomposition processes monitored inside a photocatalytic microreactor.
    Tsuchiya N; Kuwabara K; Hidaka A; Oda K; Katayama K
    Phys Chem Chem Phys; 2012 Apr; 14(14):4734-41. PubMed ID: 22307739
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flow chemistry: intelligent processing of gas-liquid transformations using a tube-in-tube reactor.
    Brzozowski M; O'Brien M; Ley SV; Polyzos A
    Acc Chem Res; 2015 Feb; 48(2):349-62. PubMed ID: 25611216
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancement of the efficiency of photocatalytic reduction of protons to hydrogen via molecular assembly.
    Wu LZ; Chen B; Li ZJ; Tung CH
    Acc Chem Res; 2014 Jul; 47(7):2177-85. PubMed ID: 24873498
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Noble metals can have different effects on photocatalysis over metal-organic frameworks (MOFs): a case study on M/NH₂-MIL-125(Ti) (M=Pt and Au).
    Sun D; Liu W; Fu Y; Fang Z; Sun F; Fu X; Zhang Y; Li Z
    Chemistry; 2014 Apr; 20(16):4780-8. PubMed ID: 24644131
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Promising Application of Optical Hexagonal TaN in Photocatalytic Reactions.
    Liu H; Song H; Zhou W; Meng X; Ye J
    Angew Chem Int Ed Engl; 2018 Dec; 57(51):16781-16784. PubMed ID: 30332526
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photocatalytic degradation of Reactive Red 22 in aqueous solution by UV-LED radiation.
    Wang WY; Ku Y
    Water Res; 2006 Jul; 40(12):2249-58. PubMed ID: 16790260
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fe(III) photocatalytic reduction of Cr(VI) by low-molecular-weight organic acids with alpha-OH.
    Sun J; Mao JD; Gong H; Lan Y
    J Hazard Mater; 2009 Sep; 168(2-3):1569-74. PubMed ID: 19372002
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient photocatalytic degradation of organic pollutants by magnetically recoverable nitrogen-doped TiO2 nanocomposite photocatalysts under visible light irradiation.
    Hamzezadeh-Nakhjavani S; Tavakoli O; Akhlaghi SP; Salehi Z; Esmailnejad-Ahranjani P; Arpanaei A
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18859-73. PubMed ID: 26206125
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Study on the photocatalytic reduction of dichromate and photocatalytic oxidation of dichlorvos.
    Chen S; Cao G
    Chemosphere; 2005 Sep; 60(9):1308-15. PubMed ID: 16018902
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pile-up glass microreactor.
    Kikutani Y; Hibara A; Uchiyama K; Hisamoto H; Tokeshi M; Kitamori T
    Lab Chip; 2002 Nov; 2(4):193-6. PubMed ID: 15100809
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photocatalytic degradation of Acid Red 4 using a titanium dioxide membrane supported on a porous ceramic tube.
    Wang WY; Irawan A; Ku Y
    Water Res; 2008 Dec; 42(19):4725-32. PubMed ID: 18814899
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The kinetics of photocatalytic degradation of aliphatic carboxylic acids in an UV/TiO2 suspension system.
    Chen Q; Song JM; Pan F; Xia FL; Yuan JY
    Environ Technol; 2009 Oct; 30(11):1103-9. PubMed ID: 19947142
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intrinsic photocatalytic assessment of reactively sputtered TiO₂ films.
    Rafieian D; Driessen RT; Ogieglo W; Lammertink RG
    ACS Appl Mater Interfaces; 2015 Apr; 7(16):8727-32. PubMed ID: 25844637
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of Ag/BiVO
    Li M; Xu G; Guan Z; Wang Y; Yu H; Yu Y
    Sci Total Environ; 2019 May; 664():230-239. PubMed ID: 30743116
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Green and sustainable chemical synthesis using flow microreactors.
    Yoshida J; Kim H; Nagaki A
    ChemSusChem; 2011 Mar; 4(3):331-40. PubMed ID: 21394921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.