BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 24814248)

  • 1. Ratio of intracellular precursors concentration and their flux influences hyaluronic acid molecular weight in Streptococcus zooepidemicus and recombinant Lactococcus lactis.
    Badle SS; Jayaraman G; Ramachandran KB
    Bioresour Technol; 2014 Jul; 163():222-7. PubMed ID: 24814248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of acetyl-CoA by acetate co-utilization in recombinant Lactococcus lactis cultures enables the production of high molecular weight hyaluronic acid.
    Puvendran K; Jayaraman G
    Appl Microbiol Biotechnol; 2019 Sep; 103(17):6989-7001. PubMed ID: 31267232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromosomal integration of hyaluronic acid synthesis (has) genes enhances the molecular weight of hyaluronan produced in Lactococcus lactis.
    Hmar RV; Prasad SB; Jayaraman G; Ramachandran KB
    Biotechnol J; 2014 Dec; 9(12):1554-64. PubMed ID: 25044639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcription analysis of hyaluronan biosynthesis genes in Streptococcus zooepidemicus and metabolically engineered Lactococcus lactis.
    Prasad SB; Ramachandran KB; Jayaraman G
    Appl Microbiol Biotechnol; 2012 Jun; 94(6):1593-607. PubMed ID: 22367612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of controlled molecular weight hyaluronic acid by glucostat strategy using recombinant Lactococcus lactis cultures.
    Jeeva P; Shanmuga Doss S; Sundaram V; Jayaraman G
    Appl Microbiol Biotechnol; 2019 Jun; 103(11):4363-4375. PubMed ID: 30968163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of induction promoters to regulate hyaluronan synthase and UDP-glucose-6-dehydrogenase of Streptococcus zooepidemicus expression in Lactococcus lactis: a case study of the regulation mechanism of hyaluronic acid polymer.
    Sheng JZ; Ling PX; Zhu XQ; Guo XP; Zhang TM; He YL; Wang FS
    J Appl Microbiol; 2009 Jul; 107(1):136-44. PubMed ID: 19302304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constructing a recombinant hyaluronic acid biosynthesis operon and producing food-grade hyaluronic acid in Lactococcus lactis.
    Sheng J; Ling P; Wang F
    J Ind Microbiol Biotechnol; 2015 Feb; 42(2):197-206. PubMed ID: 25447786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyaluronic acid production is enhanced by the additional co-expression of UDP-glucose pyrophosphorylase in Lactococcus lactis.
    Prasad SB; Jayaraman G; Ramachandran KB
    Appl Microbiol Biotechnol; 2010 Mar; 86(1):273-83. PubMed ID: 19862515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the influence of phosphatidylcholine on the molecular weight of hyaluronic acid synthesized by Streptococcus zooepidemicus.
    Sun J; Wang M; Chen Y; Shang F; Ye H; Tan T
    Appl Biochem Biotechnol; 2012 Sep; 168(1):47-57. PubMed ID: 21744115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism analysis of effect of oxygen on molecular weight of hyaluronic acid produced by Streptococcus zooepidemicus.
    Duan XJ; Niu HX; Tan WS; Zhang X
    J Microbiol Biotechnol; 2009 Mar; 19(3):299-306. PubMed ID: 19349756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyaluronic acid production by recombinant Lactococcus lactis.
    Chien LJ; Lee CK
    Appl Microbiol Biotechnol; 2007 Nov; 77(2):339-46. PubMed ID: 17805528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyaluronan molecular weight is controlled by UDP-N-acetylglucosamine concentration in Streptococcus zooepidemicus.
    Chen WY; Marcellin E; Hung J; Nielsen LK
    J Biol Chem; 2009 Jul; 284(27):18007-14. PubMed ID: 19451654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic effects of the initial glucose concentration on microbial production of hyaluronic acid.
    Pires AM; Santana MH
    Appl Biochem Biotechnol; 2010 Nov; 162(6):1751-61. PubMed ID: 20411440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial production of low molecular weight hyaluronic acid by adding hydrogen peroxide and ascorbate in batch culture of Streptococcus zooepidemicus.
    Liu L; Du G; Chen J; Zhu Y; Wang M; Sun J
    Bioresour Technol; 2009 Jan; 100(1):362-7. PubMed ID: 18619838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Higher titer hyaluronic acid production in recombinant Lactococcus lactis.
    Sunguroğlu C; Sezgin DE; Aytar Çelik P; Çabuk A
    Prep Biochem Biotechnol; 2018; 48(8):734-742. PubMed ID: 30265187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increase in hyaluronic acid production by Streptococcus equi subsp. zooepidemicus strain deficient in beta-glucuronidase in laboratory conditions.
    Krahulec J; Krahulcová J
    Appl Microbiol Biotechnol; 2006 Jul; 71(4):415-22. PubMed ID: 16292534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of hyaluronic acid precursor concentrations in molecular weight control in Streptococcus zooepidemicus.
    Chen WY; Marcellin E; Steen JA; Nielsen LK
    Mol Biotechnol; 2014 Feb; 56(2):147-56. PubMed ID: 23903961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of oxygen and shear stress on molecular weight of hyaluronic acid.
    Duan XJ; Yang L; Zhang X; Tan WS
    J Microbiol Biotechnol; 2008 Apr; 18(4):718-24. PubMed ID: 18467866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement Production of Hyaluronic Acid by Streptococcus zooepidemicus in Sugarcane Molasses.
    Pan NC; Pereira HCB; da Silva MLC; Vasconcelos AFD; Celligoi MAPC
    Appl Biochem Biotechnol; 2017 May; 182(1):276-293. PubMed ID: 27900664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly efficient production of hyaluronic acid by Streptococcus zooepidemicus R42 derived from heterologous expression of bacterial haemoglobin and mutant selection.
    Lu JF; Zhu Y; Sun HL; Liang S; Leng FF; Li HY
    Lett Appl Microbiol; 2016 Apr; 62(4):316-22. PubMed ID: 26784013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.