These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 24814286)

  • 1. Evolution of centromeric retrotransposons in grasses.
    Sharma A; Presting GG
    Genome Biol Evol; 2014 May; 6(6):1335-52. PubMed ID: 24814286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Centromeric retrotransposon lineages predate the maize/rice divergence and differ in abundance and activity.
    Sharma A; Presting GG
    Mol Genet Genomics; 2008 Feb; 279(2):133-47. PubMed ID: 18000683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retrotranspositions in orthologous regions of closely related grass species.
    Du C; Swigonová Z; Messing J
    BMC Evol Biol; 2006 Aug; 6():62. PubMed ID: 16914031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whole genome surveys of rice, maize and sorghum reveal multiple horizontal transfers of the LTR-retrotransposon Route66 in Poaceae.
    Roulin A; Piegu B; Fortune PM; Sabot F; D'Hont A; Manicacci D; Panaud O
    BMC Evol Biol; 2009 Mar; 9():58. PubMed ID: 19291296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison.
    Du J; Tian Z; Hans CS; Laten HM; Cannon SB; Jackson SA; Shoemaker RC; Ma J
    Plant J; 2010 Aug; 63(4):584-98. PubMed ID: 20525006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide survey and comparative analysis of LTR retrotransposons and their captured genes in rice and sorghum.
    Jiang SY; Ramachandran S
    PLoS One; 2013; 8(7):e71118. PubMed ID: 23923055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres.
    Nagaki K; Song J; Stupar RM; Parokonny AS; Yuan Q; Ouyang S; Liu J; Hsiao J; Jones KM; Dawe RK; Buell CR; Jiang J
    Genetics; 2003 Feb; 163(2):759-70. PubMed ID: 12618412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dynamics of LTR retrotransposon accumulation across 25 million years of panicoid grass evolution.
    Estep MC; DeBarry JD; Bennetzen JL
    Heredity (Edinb); 2013 Feb; 110(2):194-204. PubMed ID: 23321774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maize centromere structure and evolution: sequence analysis of centromeres 2 and 5 reveals dynamic Loci shaped primarily by retrotransposons.
    Wolfgruber TK; Sharma A; Schneider KL; Albert PS; Koo DH; Shi J; Gao Z; Han F; Lee H; Xu R; Allison J; Birchler JA; Jiang J; Dawe RK; Presting GG
    PLoS Genet; 2009 Nov; 5(11):e1000743. PubMed ID: 19956743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tandem repeats derived from centromeric retrotransposons.
    Sharma A; Wolfgruber TK; Presting GG
    BMC Genomics; 2013 Mar; 14():142. PubMed ID: 23452340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The draft genome of the C
    Studer AJ; Schnable JC; Weissmann S; Kolbe AR; McKain MR; Shao Y; Cousins AB; Kellogg EA; Brutnell TP
    Genome Biol; 2016 Oct; 17(1):223. PubMed ID: 27793170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retrotransposon-related DNA sequences in the centromeres of grass chromosomes.
    Miller JT; Dong F; Jackson SA; Song J; Jiang J
    Genetics; 1998 Dec; 150(4):1615-23. PubMed ID: 9832537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic evolution of bz orthologous regions in the Andropogoneae and other grasses.
    Wang Q; Dooner HK
    Plant J; 2012 Oct; 72(2):212-21. PubMed ID: 22621343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution.
    Murat F; Xu JH; Tannier E; Abrouk M; Guilhot N; Pont C; Messing J; Salse J
    Genome Res; 2010 Nov; 20(11):1545-57. PubMed ID: 20876790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A lineage-specific centromere retrotransposon in Oryza brachyantha.
    Gao D; Gill N; Kim HR; Walling JG; Zhang W; Fan C; Yu Y; Ma J; SanMiguel P; Jiang N; Cheng Z; Wing RA; Jiang J; Jackson SA
    Plant J; 2009 Dec; 60(5):820-31. PubMed ID: 19702667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Replication of nonautonomous retroelements in soybean appears to be both recent and common.
    Wawrzynski A; Ashfield T; Chen NW; Mammadov J; Nguyen A; Podicheti R; Cannon SB; Thareau V; Ameline-Torregrosa C; Cannon E; Chacko B; Couloux A; Dalwani A; Denny R; Deshpande S; Egan AN; Glover N; Howell S; Ilut D; Lai H; Del Campo SM; Metcalf M; O'Bleness M; Pfeil BE; Ratnaparkhe MB; Samain S; Sanders I; Ségurens B; Sévignac M; Sherman-Broyles S; Tucker DM; Yi J; Doyle JJ; Geffroy V; Roe BA; Maroof MA; Young ND; Innes RW
    Plant Physiol; 2008 Dec; 148(4):1760-71. PubMed ID: 18952860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure, divergence, and distribution of the CRR centromeric retrotransposon family in rice.
    Nagaki K; Neumann P; Zhang D; Ouyang S; Buell CR; Cheng Z; Jiang J
    Mol Biol Evol; 2005 Apr; 22(4):845-55. PubMed ID: 15616142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A highly conserved, small LTR retrotransposon that preferentially targets genes in grass genomes.
    Gao D; Chen J; Chen M; Meyers BC; Jackson S
    PLoS One; 2012; 7(2):e32010. PubMed ID: 22359654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence organization and evolutionary dynamics of Brachypodium-specific centromere retrotransposons.
    Qi LL; Wu JJ; Friebe B; Qian C; Gu YQ; Fu DL; Gill BS
    Chromosome Res; 2013 Aug; 21(5):507-21. PubMed ID: 23955173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae.
    Luo MC; Deal KR; Akhunov ED; Akhunova AR; Anderson OD; Anderson JA; Blake N; Clegg MT; Coleman-Derr D; Conley EJ; Crossman CC; Dubcovsky J; Gill BS; Gu YQ; Hadam J; Heo HY; Huo N; Lazo G; Ma Y; Matthews DE; McGuire PE; Morrell PL; Qualset CO; Renfro J; Tabanao D; Talbert LE; Tian C; Toleno DM; Warburton ML; You FM; Zhang W; Dvorak J
    Proc Natl Acad Sci U S A; 2009 Sep; 106(37):15780-5. PubMed ID: 19717446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.