These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 2481484)

  • 1. First bone formation and the dissection of an osteogenic lineage in the embryonic chick tibia is revealed by monoclonal antibodies against osteoblasts.
    Bruder SP; Caplan AI
    Bone; 1989; 10(5):359-75. PubMed ID: 2481484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terminal differentiation of osteogenic cells in the embryonic chick tibia is revealed by a monoclonal antibody against osteocytes.
    Bruder SP; Caplan AI
    Bone; 1990; 11(3):189-98. PubMed ID: 2202356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monoclonal antibodies reactive with human osteogenic cell surface antigens.
    Bruder SP; Horowitz MC; Mosca JD; Haynesworth SE
    Bone; 1997 Sep; 21(3):225-35. PubMed ID: 9276087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrete stages within the osteogenic lineage are revealed by alterations in the cell surface architecture of embryonic bone cells.
    Bruder SP; Caplan AI
    Connect Tissue Res; 1989; 20(1-4):73-9. PubMed ID: 2612165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteogenic cell lineage analysis is facilitated by organ cultures of embryonic chick periosteum.
    Bruder SP; Caplan AI
    Dev Biol; 1990 Oct; 141(2):319-29. PubMed ID: 2210040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A monoclonal antibody against the surface of osteoblasts recognizes alkaline phosphatase isoenzymes in bone, liver, kidney, and intestine.
    Bruder SP; Caplan AI
    Bone; 1990; 11(2):133-9. PubMed ID: 2357424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chondrocyte and osteoblast differentiation stage-specific monoclonal antibodies as a tool to investigate the initial bone formation in developing chick embryo.
    Galotto M; Campanile G; Banfi A; Trugli M; Cancedda R
    Eur J Cell Biol; 1995 Jun; 67(2):99-105. PubMed ID: 7664760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of monoclonal antibodies recognizing rat bone-associated molecules in vitro and in vivo.
    Turksen K; Bhargava U; Moe HK; Aubin JE
    J Histochem Cytochem; 1992 Sep; 40(9):1339-52. PubMed ID: 1506671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variable hormone responsiveness of osteoblast populations isolated at different stages of embryogenesis and its relationship to the osteogenic lineage.
    Gerstenfeld LC; Zurakowski D; Schaffer JL; Nichols DP; Toma CD; Broess M; Bruder SP; Caplan AI
    Endocrinology; 1996 Sep; 137(9):3957-68. PubMed ID: 8756572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monoclonal antibodies as tools for studying the osteoblast lineage.
    Aubin JE; Turksen K
    Microsc Res Tech; 1996 Feb; 33(2):128-40. PubMed ID: 8845513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular expression of bone-related proteins during in vitro osteogenesis in rat bone marrow stromal cell cultures.
    Malaval L; Modrowski D; Gupta AK; Aubin JE
    J Cell Physiol; 1994 Mar; 158(3):555-72. PubMed ID: 8126078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and enrichment of human osteoprogenitor cells by using differentiation stage-specific monoclonal antibodies.
    Joyner CJ; Bennett A; Triffitt JT
    Bone; 1997 Jul; 21(1):1-6. PubMed ID: 9213001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of osteocytes in osteoblast-like cell cultures using a monoclonal antibody specifically directed against osteocytes.
    Nijweide PJ; Mulder RJ
    Histochemistry; 1986; 84(4-6):342-7. PubMed ID: 3522495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The monoclonal antibodies 18d7/91f2 recognize a receptor regulatory protein on mouse bone marrow stromal cells.
    Weng L; Falla N; Van den Heuvel R; Raymackers J; Karperien M; Van Bezooijen R; Van Vlasselaer P; Löwik C; Merregaert J
    J Bone Miner Res; 2000 Jul; 15(7):1286-300. PubMed ID: 10893677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clonal distribution of osteoprogenitor cells in cultured chick periostea: functional relationship to bone formation.
    McCulloch CA; Fair CA; Tenenbaum HC; Limeback H; Homareau R
    Dev Biol; 1990 Aug; 140(2):352-61. PubMed ID: 2373258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies.
    Haynesworth SE; Baber MA; Caplan AI
    Bone; 1992; 13(1):69-80. PubMed ID: 1316137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transient chondrogenic phase in the intramembranous pathway during normal skeletal development.
    Nah HD; Pacifici M; Gerstenfeld LC; Adams SL; Kirsch T
    J Bone Miner Res; 2000 Mar; 15(3):522-33. PubMed ID: 10750567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monoclonal antibodies that recognize antigens in human osteosarcoma cells and normal fetal osteoblasts.
    Yamaguchi A; Kahn AJ
    Bone Miner; 1993 Sep; 22(3):165-76. PubMed ID: 8268750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteochondral differentiation and the emergence of stage-specific osteogenic cell-surface molecules by bone marrow cells in diffusion chambers.
    Bruder SP; Gazit D; Passi-Even L; Bab I; Caplan AI
    Bone Miner; 1990 Nov; 11(2):141-51. PubMed ID: 2268743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and characterization of osteogenic cells derived from first bone of the embryonic tibia.
    Syftestad GT; Weitzhandler M; Caplan AI
    Dev Biol; 1985 Aug; 110(2):275-83. PubMed ID: 4018399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.