These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 24814878)

  • 1. A facile strategy to functionalize gold nanorods with polycation brushes for biomedical applications.
    Yan P; Zhao N; Hu H; Lin X; Liu F; Xu FJ
    Acta Biomater; 2014 Aug; 10(8):3786-94. PubMed ID: 24814878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polycation-functionalized gold nanoparticles with different morphologies for superior gene transfection.
    Yan P; Wang R; Zhao N; Zhao H; Chen DF; Xu FJ
    Nanoscale; 2015 Mar; 7(12):5281-91. PubMed ID: 25721660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complexation of bioreducible cationic polymers with gold nanoparticles for improving stability in serum and application on nonviral gene delivery.
    Chuang CC; Chang CW
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7724-31. PubMed ID: 25764067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The shape and size effects of polycation functionalized silica nanoparticles on gene transfection.
    Lin X; Zhao N; Yan P; Hu H; Xu FJ
    Acta Biomater; 2015 Jan; 11():381-92. PubMed ID: 25219349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene oxide-promoted reshaping and coarsening of gold nanorods and nanoparticles.
    Pan H; Low S; Weerasuriya N; Shon YS
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3406-13. PubMed ID: 25611371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene delivery using dendrimer-entrapped gold nanoparticles as nonviral vectors.
    Shan Y; Luo T; Peng C; Sheng R; Cao A; Cao X; Shen M; Guo R; Tomás H; Shi X
    Biomaterials; 2012 Apr; 33(10):3025-35. PubMed ID: 22248990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Encapsulating gold nanomaterials into size-controlled human serum albumin nanoparticles for cancer therapy platforms.
    Peralta DV; He J; Wheeler DA; Zhang JZ; Tarr MA
    J Microencapsul; 2014; 31(8):824-31. PubMed ID: 25090588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile preparation of cationic gold nanoparticle-bioconjugates for cell penetration and nuclear targeting.
    Ojea-Jiménez I; García-Fernández L; Lorenzo J; Puntes VF
    ACS Nano; 2012 Sep; 6(9):7692-702. PubMed ID: 22870984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermoresponsive PDMAEMA Brushes: Effect of Gold Nanoparticle Deposition.
    Yenice Z; Schön S; Bildirir H; Genzer J; von Klitzing R
    J Phys Chem B; 2015 Aug; 119(32):10348-58. PubMed ID: 26132296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods.
    Qiu Y; Liu Y; Wang L; Xu L; Bai R; Ji Y; Wu X; Zhao Y; Li Y; Chen C
    Biomaterials; 2010 Oct; 31(30):7606-19. PubMed ID: 20656344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-pot synthesis of polypeptide-gold nanoconjugates for in vitro gene transfection.
    Yan X; Blacklock J; Li J; Möhwald H
    ACS Nano; 2012 Jan; 6(1):111-7. PubMed ID: 22141879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Encapsulating gold nanoparticles or nanorods in graphene oxide shells as a novel gene vector.
    Xu C; Yang D; Mei L; Lu B; Chen L; Li Q; Zhu H; Wang T
    ACS Appl Mater Interfaces; 2013 Apr; 5(7):2715-24. PubMed ID: 23477862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size tunable gold nanorods evenly distributed in the channels of mesoporous silica.
    Li Z; Kübel C; Pârvulescu VI; Richards R
    ACS Nano; 2008 Jun; 2(6):1205-12. PubMed ID: 19206338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods.
    Ni W; Kou X; Yang Z; Wang J
    ACS Nano; 2008 Apr; 2(4):677-86. PubMed ID: 19206598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural mediation on polycation nanoparticles by sulfadiazine to enhance DNA transfection efficiency and reduce toxicity.
    Long X; Zhang Z; Han S; Tang M; Zhou J; Zhang J; Xue Z; Li Y; Zhang R; Deng L; Dong A
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7542-51. PubMed ID: 25801088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular uptake behaviour, photothermal therapy performance, and cytotoxicity of gold nanorods with various coatings.
    Zhu XM; Fang C; Jia H; Huang Y; Cheng CH; Ko CH; Chen Z; Wang J; Wang YX
    Nanoscale; 2014 Oct; 6(19):11462-72. PubMed ID: 25155843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploiting the protein corona around gold nanorods for loading and triggered release.
    Kah JC; Chen J; Zubieta A; Hamad-Schifferli K
    ACS Nano; 2012 Aug; 6(8):6730-40. PubMed ID: 22804333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Core-shell-shell nanorods for controlled release of silver that can serve as a nanoheater for photothermal treatment on bacteria.
    Hu B; Wang N; Han L; Chen ML; Wang JH
    Acta Biomater; 2015 Jan; 11():511-9. PubMed ID: 25219350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dendrimer-modified gold nanorods as a platform for combinational gene therapy and photothermal therapy of tumors.
    Ye L; Chen Y; Mao J; Lei X; Yang Q; Cui C
    J Exp Clin Cancer Res; 2021 Sep; 40(1):303. PubMed ID: 34579760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of hierarchical core-shell Au@ZnO heteroarchitectures initiated by heteroseed assembly for photocatalytic applications.
    Qin Y; Zhou Y; Li J; Ma J; Shi D; Chen J; Yang J
    J Colloid Interface Sci; 2014 Mar; 418():171-7. PubMed ID: 24461832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.