These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 2481519)

  • 1. Blood modeling using polystyrene microspheres.
    Fukada E; Seaman GV; Liepsch D; Lee M; Friis-Baastad L
    Biorheology; 1989; 26(2):401-13. PubMed ID: 2481519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of surface geometry and morphic features on the flow characteristics of microsphere suspensions.
    Ramadan MA; Tawashi R
    J Pharm Sci; 1990 Oct; 79(10):929-33. PubMed ID: 2280365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Beam Acoustic Trapping of Red Blood Cells and Polystyrene Microspheres in Flowing Red Blood Cell Saline and Plasma Suspensions.
    Liu HC; Li Y; Chen R; Jung H; Shung KK
    Ultrasound Med Biol; 2017 Apr; 43(4):852-859. PubMed ID: 28236533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of suspension particle size on the performance of air-jet, ultrasonic and vibrating-mesh nebulisers.
    Najlah M; Parveen I; Alhnan MA; Ahmed W; Faheem A; Phoenix DA; Taylor KM; Elhissi A
    Int J Pharm; 2014 Jan; 461(1-2):234-41. PubMed ID: 24275450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lateral migration of blood cells and microspheres in two-dimensional Poiseuille flow: a laser-Doppler study.
    Uijttewaal WS; Nijhof EJ; Heethaar RM
    J Biomech; 1994 Jan; 27(1):35-42. PubMed ID: 8106534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Red blood cell aggregation and blood viscosity in an isolated heart preparation.
    Charansonney O; Mouren S; Dufaux J; Duvelleroy M; Vicaut E
    Biorheology; 1993; 30(1):75-84. PubMed ID: 7690613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical sizing of particles in suspensions. II. Experiments with rigid spheres.
    Grover NB; Naaman J; Ben-Sasson S; Doljanski F; Nadav E
    Biophys J; 1969 Nov; 9(11):1415-25. PubMed ID: 5353145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Comparison of rheologic properties between Ca-alginate hydrogel microspheres suspension and whole blood].
    Xu P; Wang X; Li Y; Wang F; Duan M; Yang L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Feb; 30(1):100-4. PubMed ID: 23488147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-Newtonian rheology in suspension cell cultures significantly impacts bioreactor shear stress quantification.
    Wyma A; Martin-Alarcon L; Walsh T; Schmidt TA; Gates ID; Kallos MS
    Biotechnol Bioeng; 2018 Aug; 115(8):2101-2113. PubMed ID: 29704461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies of fluids simulating blood-like rheological properties and applications in models of arterial branches.
    Liepsch D; Thurston G; Lee M
    Biorheology; 1991; 28(1-2):39-52. PubMed ID: 2049531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow properties of hemolysate-loaded liposome suspensions.
    Kato A; Arakawa M; Kondo T
    Biorheology; 1983; 20(5):593-601. PubMed ID: 6203574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation the injectability of injectable microparticle delivery systems on the basis of injection force and discharged rate.
    Zhao C; Zhu Z; Cao X; Pan F; Li F; Xue M; Guo Y; Zhao Y; Zeng J; Liu Y; Yang Z; Liu Y; Ren F; Feng L
    Eur J Pharm Biopharm; 2023 Sep; 190():58-72. PubMed ID: 37437667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microrheology and light transmission of blood. IV. The kinetics of artificial red cell aggregation induced by Dextran.
    Volger E; Schmid-Schönbein H; Gosen Jv; Klose HJ; Kline KA
    Pflugers Arch; 1975; 354(4):319-37. PubMed ID: 1167684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The near-wall excess of platelet-sized particles in blood flow: its dependence on hematocrit and wall shear rate.
    Tilles AW; Eckstein EC
    Microvasc Res; 1987 Mar; 33(2):211-23. PubMed ID: 3587076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental evaluation of mechanical and electrical properties of RBC suspensions under flow. Role of RBC aggregating agent.
    Antonova N; Riha P; Ivanov I
    Clin Hemorheol Microcirc; 2010; 45(2-4):253-61. PubMed ID: 20675907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rheology of non-Brownian suspensions.
    Denn MM; Morris JF
    Annu Rev Chem Biomol Eng; 2014; 5():203-28. PubMed ID: 24655134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical and experimental analysis of the sedimentation kinetics of concentrated red cell suspensions in a centrifugal field: determination of the aggregation and deformation of RBC by flux density and viscosity functions.
    Lerche D; Frömer D
    Biorheology; 2001; 38(2-3):249-62. PubMed ID: 11381179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of new micrometer-sized radiopaque polymeric particles of narrow size distribution by a single-step swelling of uniform polystyrene template microspheres for X-ray imaging applications.
    Galperin A; Margel S
    Biomacromolecules; 2006 Sep; 7(9):2650-60. PubMed ID: 16961329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rheology of Suspensions Thickened by Cellulose Nanocrystals.
    Pal R; Pattath K
    Nanomaterials (Basel); 2024 Jun; 14(13):. PubMed ID: 38998728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting the viscosity of digesta from the physical characteristics of particle suspensions using existing rheological models.
    Hardacre AK; Lentle RG; Yap SY; Monro JA
    J R Soc Interface; 2018 May; 15(142):. PubMed ID: 29792306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.