These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 24815234)

  • 21. Temporal coherence of the acoustic field forward propagated through a continental shelf with random internal waves.
    Gong Z; Chen T; Ratilal P; Makris NC
    J Acoust Soc Am; 2013 Nov; 134(5):3476-85. PubMed ID: 24180758
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Focusing on Plates: Controlling Guided Waves using Negative Refraction.
    Philippe FD; Murray TW; Prada C
    Sci Rep; 2015 Jun; 5():11112. PubMed ID: 26053960
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plate mode propagation losses in solidly mounted resonators.
    Thalmayr F; Hashimoto KY; Omori T; Yamaguchi M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Dec; 57(12):2844-9. PubMed ID: 21156381
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A physical interpretation of elastic guided-wave reflection from normal ends of a waveguide.
    Bian H; Rose JL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jul; 51(7):839-48. PubMed ID: 15301003
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High frequency normal mode statistics in a shallow water waveguide: the effect of random linear internal waves.
    Raghukumar K; Colosi JA
    J Acoust Soc Am; 2014 Jul; 136(1):66-79. PubMed ID: 24993196
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Slow sound in lined flow ducts.
    Aurégan Y; Pagneux V
    J Acoust Soc Am; 2015 Aug; 138(2):605-13. PubMed ID: 26328679
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling three-dimensional propagation in a continental shelf environment.
    Ballard MS
    J Acoust Soc Am; 2012 Mar; 131(3):1969-77. PubMed ID: 22423694
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acoustic mode coupling induced by nonlinear internal waves: evaluation of the mode coupling matrices and applications.
    Yang TC
    J Acoust Soc Am; 2014 Feb; 135(2):610-25. PubMed ID: 25234871
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Measurement and modeling of three-dimensional sound intensity variations due to shallow-water internal waves.
    Badiey M; Katsnelson BG; Lynch JF; Pereselkov S; Siegmann WL
    J Acoust Soc Am; 2005 Feb; 117(2):613-25. PubMed ID: 15759682
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acoustical scattering by arrays of cylinders in waveguides.
    Cai LW; Dacol DK; Calvo DC; Orris GJ
    J Acoust Soc Am; 2007 Sep; 122(3):1340. PubMed ID: 17927397
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wave envelopes method for description of nonlinear acoustic wave propagation.
    Wójcik J; Nowicki A; Lewin PA; Bloomfield PE; Kujawska T; Filipczyński L
    Ultrasonics; 2006 Jul; 44(3):310-29. PubMed ID: 16780911
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Numerical modelling of MHD waves in the solar chromosphere.
    Carlsson M; Bogdan TJ
    Philos Trans A Math Phys Eng Sci; 2006 Feb; 364(1839):395-404. PubMed ID: 16414886
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acoustic field variability induced by time evolving internal wave fields.
    Finette S; Orr MH; Turgut A; Apel JR; Badiey M; Chiu CS; Headrick RH; Kemp JN; Lynch JF; Newhall AE; von der Heydt K ; Pasewark B; Wolf SN; Tielbuerger D
    J Acoust Soc Am; 2000 Sep; 108(3 Pt 1):957-72. PubMed ID: 11008800
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A coupled mode model for omnidirectional three-dimensional underwater sound propagation.
    DeCourcy BJ; Duda TF
    J Acoust Soc Am; 2020 Jul; 148(1):51. PubMed ID: 32752767
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plasmonic grating as a nonlinear converter-coupler.
    Talebi N; Shahabadi M; Khunsin W; Vogelgesang R
    Opt Express; 2012 Jan; 20(2):1392-405. PubMed ID: 22274484
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface wave conversion analysis on a lengthwise soldered circular cylindrical shell.
    Baillard A; Chiumia J; Décultot D; Maze G; Klauson A; Metsaveer J
    J Acoust Soc Am; 2008 Oct; 124(4):2061-7. PubMed ID: 19062846
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient coupling of acoustic modes in microfluidic channel devices.
    Bora M; Shusteff M
    Lab Chip; 2015 Aug; 15(15):3192-202. PubMed ID: 26118358
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Propagation of QSH (quasi shear horizontal) acoustic waves in piezoelectric plates.
    Zaitsev BD; Joshi SG; Kuznetsova IE
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(5):1298-302. PubMed ID: 18244322
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Low-frequency broadband sound source localization using an adaptive normal mode back-propagation approach in a shallow-water ocean.
    Lin YT; Newhall AE; Lynch JF
    J Acoust Soc Am; 2012 Feb; 131(2):1798-813. PubMed ID: 22352606
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On acoustic propagation in three-dimensional rectangular ducts with flexible walls and porous linings.
    Lawrie JB
    J Acoust Soc Am; 2012 Mar; 131(3):1890-901. PubMed ID: 22423686
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.