BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 24815277)

  • 1. Comparison of voice relative fundamental frequency estimates derived from an accelerometer signal and low-pass filtered and unprocessed microphone signals.
    Lien YA; Stepp CE
    J Acoust Soc Am; 2014 May; 135(5):2977-85. PubMed ID: 24815277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voice Relative Fundamental Frequency Via Neck-Skin Acceleration in Individuals With Voice Disorders.
    Lien YA; Calabrese CR; Michener CM; Murray EH; Van Stan JH; Mehta DD; Hillman RE; Noordzij JP; Stepp CE
    J Speech Lang Hear Res; 2015 Oct; 58(5):1482-7. PubMed ID: 26134171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated Relative Fundamental Frequency Algorithms for Use With Neck-Surface Accelerometer Signals.
    Groll MD; Vojtech JM; Hablani S; Mehta DD; Buckley DP; Noordzij JP; Stepp CE
    J Voice; 2022 Mar; 36(2):156-169. PubMed ID: 32653267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fundamental Voice Frequency: Acoustic, Electroglottographic, and Accelerometer Measurement in Individuals With and Without Vocal Alteration.
    Cristina Oliveira R; Gama ACC; Magalhães MDC
    J Voice; 2021 Mar; 35(2):174-180. PubMed ID: 31575435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of phonetic context on relative fundamental frequency.
    Lien YA; Gattuccio CI; Stepp CE
    J Speech Lang Hear Res; 2014 Aug; 57(4):1259-67. PubMed ID: 24686466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessments of Voice Use and Voice Quality Among College/University Singing Students Ages 18-24 Through Ambulatory Monitoring With a Full Accelerometer Signal.
    Schloneger MJ; Hunter EJ
    J Voice; 2017 Jan; 31(1):124.e21-124.e30. PubMed ID: 26897545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of voice therapy on relative fundamental frequency during voicing offset and onset in patients with vocal hyperfunction.
    Stepp CE; Merchant GR; Heaton JT; Hillman RE
    J Speech Lang Hear Res; 2011 Oct; 54(5):1260-6. PubMed ID: 21498578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effects of Stress Type, Vowel Identity, Baseline f
    Park Y; Stepp CE
    J Voice; 2019 Sep; 33(5):603-610. PubMed ID: 30078521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relative Fundamental Frequency in Children With and Without Vocal Fold Nodules.
    Heller Murray ES; Segina RK; Woodnorth GH; Stepp CE
    J Speech Lang Hear Res; 2020 Feb; 63(2):361-371. PubMed ID: 32073342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Test-Retest Reliability of Relative Fundamental Frequency and Conventional Acoustic, Aerodynamic, and Perceptual Measures in Individuals With Healthy Voices.
    Park Y; Stepp CE
    J Speech Lang Hear Res; 2019 Jun; 62(6):1707-1718. PubMed ID: 31181173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of voice quality using neck-surface acceleration: Comparison with glottal flow and radiated sound.
    Włodarczak M; Ludusan B; Sundberg J; Heldner M
    J Voice; 2022 Aug; ():. PubMed ID: 36028369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relative fundamental frequency during vocal onset and offset in older speakers with and without Parkinson's disease.
    Stepp CE
    J Acoust Soc Am; 2013 Mar; 133(3):1637-43. PubMed ID: 23464033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ambulatory monitoring of disordered voices.
    Hillman RE; Heaton JT; Masaki A; Zeitels SM; Cheyne HA
    Ann Otol Rhinol Laryngol; 2006 Nov; 115(11):795-801. PubMed ID: 17165660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of contact microphone and electroglottograph for the measurement of vocal fundamental frequency.
    Askenfelt A; Gauffin J; Sundberg J; Kitzing P
    J Speech Hear Res; 1980 Jun; 23(2):258-73. PubMed ID: 7003261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relationship between perception of vocal effort and relative fundamental frequency during voicing offset and onset.
    Stepp CE; Sawin DE; Eadie TL
    J Speech Lang Hear Res; 2012 Dec; 55(6):1887-96. PubMed ID: 22615477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Adventitious Acute Vocal Trauma: Relative Fundamental Frequency and Listener Perception.
    Murray ES; Hands GL; Calabrese CR; Stepp CE
    J Voice; 2016 Mar; 30(2):177-85. PubMed ID: 26028369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Relationship Between Relative Fundamental Frequency and a Kinematic Estimate of Laryngeal Stiffness in Healthy Adults.
    McKenna VS; Heller Murray ES; Lien YS; Stepp CE
    J Speech Lang Hear Res; 2016 Dec; 59(6):1283-1294. PubMed ID: 27936279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relative Fundamental Frequency Distinguishes Between Phonotraumatic and Non-Phonotraumatic Vocal Hyperfunction.
    Heller Murray ES; Lien YS; Van Stan JH; Mehta DD; Hillman RE; Pieter Noordzij J; Stepp CE
    J Speech Lang Hear Res; 2017 Jun; 60(6):1507-1515. PubMed ID: 28595317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic correlate of vocal effort in spasmodic dysphonia.
    Eadie TL; Stepp CE
    Ann Otol Rhinol Laryngol; 2013 Mar; 122(3):169-76. PubMed ID: 23577569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated estimation of relative fundamental frequency.
    Lien YA; Stepp CE
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2136-9. PubMed ID: 24110143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.