These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 24815302)

  • 21. The Janus face of statistical adjustment: confounders versus colliders.
    Janszky I; Ahlbom A; Svensson AC
    Eur J Epidemiol; 2010 Jun; 25(6):361-3. PubMed ID: 20449636
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of exposure measurement errors on results from epidemiologic studies of different designs.
    Richmond-Bryant J; Long TC
    J Expo Sci Environ Epidemiol; 2020 May; 30(3):420-429. PubMed ID: 31477780
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of PM2.5, gaseous pollutants, and meteorological interactions in the context of time-series health effects models.
    Ito K; Thurston GD; Silverman RA
    J Expo Sci Environ Epidemiol; 2007 Dec; 17 Suppl 2():S45-60. PubMed ID: 18079764
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Controlling for seasonal patterns and time varying confounders in time-series epidemiological models: a simulation study.
    Perrakis K; Gryparis A; Schwartz J; Le Tertre A; Katsouyanni K; Forastiere F; Stafoggia M; Samoli E
    Stat Med; 2014 Dec; 33(28):4904-18. PubMed ID: 25052462
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measurement Error and Environmental Epidemiology: a Policy Perspective.
    Edwards JK; Keil AP
    Curr Environ Health Rep; 2017 Mar; 4(1):79-88. PubMed ID: 28138941
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Confounding and regression adjustment in difference-in-differences studies.
    Zeldow B; Hatfield LA
    Health Serv Res; 2021 Oct; 56(5):932-941. PubMed ID: 33978956
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of exposure measurement error in air pollution epidemiology: effect of error type in time-series studies.
    Goldman GT; Mulholland JA; Russell AG; Strickland MJ; Klein M; Waller LA; Tolbert PE
    Environ Health; 2011 Jun; 10():61. PubMed ID: 21696612
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The alarming problems of confounding equivalence using logistic regression models in the perspective of causal diagrams.
    Yu Y; Li H; Sun X; Su P; Wang T; Liu Y; Yuan Z; Liu Y; Xue F
    BMC Med Res Methodol; 2017 Dec; 17(1):177. PubMed ID: 29281984
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Point: clarifying policy evidence with potential-outcomes thinking--beyond exposure-response estimation in air pollution epidemiology.
    Zigler CM; Dominici F
    Am J Epidemiol; 2014 Dec; 180(12):1133-40. PubMed ID: 25399414
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Applying the E Value to Assess the Robustness of Epidemiologic Fields of Inquiry to Unmeasured Confounding.
    Trinquart L; Erlinger AL; Petersen JM; Fox M; Galea S
    Am J Epidemiol; 2019 Jun; 188(6):1174-1180. PubMed ID: 30874728
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Invited commentary: variable selection versus shrinkage in the control of multiple confounders.
    Greenland S
    Am J Epidemiol; 2008 Mar; 167(5):523-9; discussion 530-1. PubMed ID: 18227100
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Panel discussion review: session three--issues involved in interpretation of epidemiologic analyses--statistical modeling.
    Bateson TF; Coull BA; Hubbell B; Ito K; Jerrett M; Lumley T; Thomas D; Vedal S; Ross M
    J Expo Sci Environ Epidemiol; 2007 Dec; 17 Suppl 2():S90-6. PubMed ID: 18079770
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controlling for confounding via propensity score methods can result in biased estimation of the conditional AUC: A simulation study.
    Galadima HI; McClish DK
    Pharm Stat; 2019 Oct; 18(5):568-582. PubMed ID: 31111682
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Noncollapsibility and its role in quantifying confounding bias in logistic regression.
    Schuster NA; Twisk JWR; Ter Riet G; Heymans MW; Rijnhart JJM
    BMC Med Res Methodol; 2021 Jul; 21(1):136. PubMed ID: 34225653
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Linkage failures in ecological studies.
    Nurminen M
    World Health Stat Q; 1995; 48(2):78-84. PubMed ID: 8585237
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Errors in exposure measures.
    Lebret E
    Toxicol Ind Health; 1990 Oct; 6(5):147-56. PubMed ID: 2274979
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The impact of imprecisely measured covariates on estimating gene-environment interactions.
    Greenwood DC; Gilthorpe MS; Cade JE
    BMC Med Res Methodol; 2006 May; 6():21. PubMed ID: 16674808
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis.
    Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ;
    Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sources of confounding in life course epidemiology.
    Santos S; Zugna D; Pizzi C; Richiardi L
    J Dev Orig Health Dis; 2019 Jun; 10(3):299-305. PubMed ID: 30111382
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A New Method for Partial Correction of Residual Confounding in Time-Series and Other Observational Studies.
    Flanders WD; Strickland MJ; Klein M
    Am J Epidemiol; 2017 May; 185(10):941-949. PubMed ID: 28430842
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.