These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 24815336)
1. The co-inertia approach in identification of specific microRNA in early and advanced atherosclerosis plaque. Jovanović I; Zivković M; Jovanović J; Djurić T; Stanković A Med Hypotheses; 2014 Jul; 83(1):11-5. PubMed ID: 24815336 [TBL] [Abstract][Full Text] [Related]
2. A novel mouse model of atherosclerotic plaque instability for drug testing and mechanistic/therapeutic discoveries using gene and microRNA expression profiling. Chen YC; Bui AV; Diesch J; Manasseh R; Hausding C; Rivera J; Haviv I; Agrotis A; Htun NM; Jowett J; Hagemeyer CE; Hannan RD; Bobik A; Peter K Circ Res; 2013 Jul; 113(3):252-65. PubMed ID: 23748430 [TBL] [Abstract][Full Text] [Related]
3. Unique MicroRNA signatures associated with early coronary atherosclerotic plaques. Wang R; Dong LD; Meng XB; Shi Q; Sun WY Biochem Biophys Res Commun; 2015 Aug; 464(2):574-9. PubMed ID: 26159918 [TBL] [Abstract][Full Text] [Related]
4. miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study. Raitoharju E; Lyytikäinen LP; Levula M; Oksala N; Mennander A; Tarkka M; Klopp N; Illig T; Kähönen M; Karhunen PJ; Laaksonen R; Lehtimäki T Atherosclerosis; 2011 Nov; 219(1):211-7. PubMed ID: 21820659 [TBL] [Abstract][Full Text] [Related]
5. Transcriptome-wide based identification of miRs in congenital anomalies of the kidney and urinary tract (CAKUT) in children: the significant upregulation of tissue miR-144 expression. Jovanovic I; Zivkovic M; Kostic M; Krstic Z; Djuric T; Kolic I; Alavantic D; Stankovic A J Transl Med; 2016 Jun; 14(1):193. PubMed ID: 27364533 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of MicroRNA-494 Reduces Carotid Artery Atherosclerotic Lesion Development and Increases Plaque Stability. Wezel A; Welten SM; Razawy W; Lagraauw HM; de Vries MR; Goossens EA; Boonstra MC; Hamming JF; Kandimalla ER; Kuiper J; Quax PH; Nossent AY; Bot I Ann Surg; 2015 Nov; 262(5):841-7; discussion 847-8. PubMed ID: 26583674 [TBL] [Abstract][Full Text] [Related]
7. Overexpression of microRNA-145 in atherosclerotic plaques from hypertensive patients. Santovito D; Mandolini C; Marcantonio P; De Nardis V; Bucci M; Paganelli C; Magnacca F; Ucchino S; Mastroiacovo D; Desideri G; Mezzetti A; Cipollone F Expert Opin Ther Targets; 2013 Mar; 17(3):217-23. PubMed ID: 23339529 [TBL] [Abstract][Full Text] [Related]
8. Angiotensin receptor type 1 polymorphism A1166C is associated with altered AT1R and miR-155 expression in carotid plaque tissue and development of hypoechoic carotid plaques. Stanković A; Kolaković A; Živković M; Djurić T; Bundalo M; Končar I; Davidović L; Alavantić D Atherosclerosis; 2016 May; 248():132-9. PubMed ID: 27016615 [TBL] [Abstract][Full Text] [Related]
9. microRNA expression signatures and parallels between monocyte subsets and atherosclerotic plaque in humans. Bidzhekov K; Gan L; Denecke B; Rostalsky A; Hristov M; Koeppel TA; Zernecke A; Weber C Thromb Haemost; 2012 Apr; 107(4):619-25. PubMed ID: 22370758 [TBL] [Abstract][Full Text] [Related]
10. MicroRNAs in the atherosclerotic plaque. Raitoharju E; Oksala N; Lehtimäki T Clin Chem; 2013 Dec; 59(12):1708-21. PubMed ID: 23729638 [TBL] [Abstract][Full Text] [Related]
11. MicroRNA-specific regulatory mechanisms in atherosclerosis. Nazari-Jahantigh M; Egea V; Schober A; Weber C J Mol Cell Cardiol; 2015 Dec; 89(Pt A):35-41. PubMed ID: 25450610 [TBL] [Abstract][Full Text] [Related]
12. Transcoronary gradients of vascular miRNAs and coronary atherosclerotic plaque characteristics. Leistner DM; Boeckel JN; Reis SM; Thome CE; De Rosa R; Keller T; Palapies L; Fichtlscherer S; Dimmeler S; Zeiher AM Eur Heart J; 2016 Jun; 37(22):1738-49. PubMed ID: 26916800 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Loyer X; Potteaux S; Vion AC; Guérin CL; Boulkroun S; Rautou PE; Ramkhelawon B; Esposito B; Dalloz M; Paul JL; Julia P; Maccario J; Boulanger CM; Mallat Z; Tedgui A Circ Res; 2014 Jan; 114(3):434-43. PubMed ID: 24255059 [TBL] [Abstract][Full Text] [Related]
14. MicroRNA-21 is a unique signature associated with coronary plaque instability in humans by regulating matrix metalloproteinase-9 via reversion-inducing cysteine-rich protein with Kazal motifs. Fan X; Wang E; Wang X; Cong X; Chen X Exp Mol Pathol; 2014 Apr; 96(2):242-9. PubMed ID: 24594117 [TBL] [Abstract][Full Text] [Related]
18. Potential new therapeutic targets: Association of microRNA with atherosclerotic plaque stability. Huang P Int J Immunopathol Pharmacol; 2023; 37():3946320231185657. PubMed ID: 37403558 [TBL] [Abstract][Full Text] [Related]
19. New therapeutic potential of microRNA treatment to target vulnerable atherosclerotic lesions and plaque rupture. Martin K; O'Sullivan JF; Caplice NM Curr Opin Cardiol; 2011 Nov; 26(6):569-75. PubMed ID: 21918434 [TBL] [Abstract][Full Text] [Related]
20. MicroRNA-210 Enhances Fibrous Cap Stability in Advanced Atherosclerotic Lesions. Eken SM; Jin H; Chernogubova E; Li Y; Simon N; Sun C; Korzunowicz G; Busch A; Bäcklund A; Österholm C; Razuvaev A; Renné T; Eckstein HH; Pelisek J; Eriksson P; González Díez M; Perisic Matic L; Schellinger IN; Raaz U; Leeper NJ; Hansson GK; Paulsson-Berne G; Hedin U; Maegdefessel L Circ Res; 2017 Feb; 120(4):633-644. PubMed ID: 27895035 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]