These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 24815540)

  • 1. Replica-exchange molecular dynamics simulation of basic fibroblast growth factor adsorption on hydroxyapatite.
    Liao C; Zhou J
    J Phys Chem B; 2014 Jun; 118(22):5843-52. PubMed ID: 24815540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does adsorption at hydroxyapatite surfaces induce peptide folding? Insights from large-scale B3LYP calculations.
    Rimola A; Aschi M; Orlando R; Ugliengo P
    J Am Chem Soc; 2012 Jul; 134(26):10899-910. PubMed ID: 22680347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular simulation of protein adsorption and desorption on hydroxyapatite surfaces.
    Shen JW; Wu T; Wang Q; Pan HH
    Biomaterials; 2008 Feb; 29(5):513-32. PubMed ID: 17988731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface energetics of the hydroxyapatite nanocrystal-water interface: a molecular dynamics study.
    Zhao W; Xu Z; Yang Y; Sahai N
    Langmuir; 2014 Nov; 30(44):13283-92. PubMed ID: 25314374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Density functional theory study of the binding of glycine, proline, and hydroxyproline to the hydroxyapatite (0001) and (0110) surfaces.
    Almora-Barrios N; Austen KF; de Leeuw NH
    Langmuir; 2009 May; 25(9):5018-25. PubMed ID: 19397352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water adsorption on the stoichiometric (001) and (010) surfaces of hydroxyapatite: a periodic B3LYP study.
    Corno M; Busco C; Bolis V; Tosoni S; Ugliengo P
    Langmuir; 2009 Feb; 25(4):2188-98. PubMed ID: 19161264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Hydroxyapatite Surface on BMP-2 Biological Properties by Docking and Molecular Simulation Approaches.
    Gu H; Xue Z; Wang M; Yang M; Wang K; Xu D
    J Phys Chem B; 2019 Apr; 123(15):3372-3382. PubMed ID: 30913384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic roles of basic amino acids in statherin recognition of hydroxyapatite.
    Goobes R; Goobes G; Shaw WJ; Drobny GP; Campbell CT; Stayton PS
    Biochemistry; 2007 Apr; 46(16):4725-33. PubMed ID: 17391007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulations of adsorption and desorption of bone morphogenetic protein-2 on textured hydroxyapatite surfaces.
    Huang B; Lou Y; Li T; Lin Z; Sun S; Yuan Y; Liu C; Gu Y
    Acta Biomater; 2018 Oct; 80():121-130. PubMed ID: 30223095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulation of the adsorption behavior of two different drugs on hydroxyapatite and Zn-doped hydroxyapatite.
    Shang S; Zhao Q; Zhang D; Sun R; Tang Y
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110017. PubMed ID: 31546382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular simulation to characterize the adsorption behavior of a fibrinogen gamma-chain fragment.
    Agashe M; Raut V; Stuart SJ; Latour RA
    Langmuir; 2005 Feb; 21(3):1103-17. PubMed ID: 15667197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The structure, dynamics, and energetics of protein adsorption-lessons learned from adsorption of statherin to hydroxyapatite.
    Goobes G; Goobes R; Shaw WJ; Gibson JM; Long JR; Raghunathan V; Schueler-Furman O; Popham JM; Baker D; Campbell CT; Stayton PS; Drobny GP
    Magn Reson Chem; 2007 Dec; 45 Suppl 1():S32-47. PubMed ID: 18172904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of water on the binding of glycosaminoglycan saccharides to hydroxyapatite surfaces: a molecular dynamics study.
    Ruiz Hernandez SE; Streeter I; de Leeuw NH
    Phys Chem Chem Phys; 2015 Sep; 17(34):22377-88. PubMed ID: 26247336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption processes of Gly and Glu amino acids on hydroxyapatite surfaces at the atomic level.
    Pan H; Tao J; Xu X; Tang R
    Langmuir; 2007 Aug; 23(17):8972-81. PubMed ID: 17658861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino acids and proteins at ZnO-water interfaces in molecular dynamics simulations.
    Nawrocki G; Cieplak M
    Phys Chem Chem Phys; 2013 Aug; 15(32):13628-36. PubMed ID: 23836065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ab initio modeling of protein/biomaterial interactions: glycine adsorption at hydroxyapatite surfaces.
    Rimola A; Corno M; Zicovich-Wilson CM; Ugliengo P
    J Am Chem Soc; 2008 Dec; 130(48):16181-3. PubMed ID: 18989958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acidic and basic fibroblast growth factor bind with differing affinity to the same heparan sulfate proteoglycan on BALB/c 3T3 cells: implications for potentiation of growth factor action by heparin.
    Brown KJ; Hendry IA; Parish CR
    J Cell Biochem; 1995 May; 58(1):6-14. PubMed ID: 7543903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of Oligosaccharide Chain Polarity in Protein-Glycosaminoglycan Interactions.
    Bojarski KK; Samsonov SA
    J Chem Inf Model; 2021 Jan; 61(1):455-466. PubMed ID: 33375794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computer modelling study of the uptake, structure and distribution of carbonate defects in hydroxy-apatite.
    Peroos S; Du Z; de Leeuw NH
    Biomaterials; 2006 Mar; 27(9):2150-61. PubMed ID: 16225917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiscale simulations of protein G B1 adsorbed on charged self-assembled monolayers.
    Liu J; Liao C; Zhou J
    Langmuir; 2013 Sep; 29(36):11366-74. PubMed ID: 23947739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.