BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

749 related articles for article (PubMed ID: 24815684)

  • 1. Chitosan/β-1,3-glucan/calcium phosphate ceramics composites--novel cell scaffolds for bone tissue engineering application.
    Przekora A; Palka K; Ginalska G
    J Biotechnol; 2014 Jul; 182-183():46-53. PubMed ID: 24815684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomedical potential of chitosan/HA and chitosan/β-1,3-glucan/HA biomaterials as scaffolds for bone regeneration--A comparative study.
    Przekora A; Palka K; Ginalska G
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():891-9. PubMed ID: 26478384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro evaluation of biomimetic chitosan-calcium phosphate scaffolds with potential application in bone tissue engineering.
    Tanase CE; Sartoris A; Popa MI; Verestiuc L; Unger RE; Kirkpatrick CJ
    Biomed Mater; 2013 Apr; 8(2):025002. PubMed ID: 23343569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced differentiation of osteoblastic cells on novel chitosan/β-1,3-glucan/bioceramic scaffolds for bone tissue regeneration.
    Przekora A; Ginalska G
    Biomed Mater; 2015 Jan; 10(1):015009. PubMed ID: 25586067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Addition of 1,3-β-D-glucan to chitosan-based composites enhances osteoblast adhesion, growth, and proliferation.
    Przekora A; Ginalska G
    Int J Biol Macromol; 2014 Sep; 70():474-81. PubMed ID: 25064557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro assessment of three-dimensionally plotted nagelschmidtite bioceramic scaffolds with varied macropore morphologies.
    Xu M; Zhai D; Chang J; Wu C
    Acta Biomater; 2014 Jan; 10(1):463-76. PubMed ID: 24071000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioactive polymeric-ceramic hybrid 3D scaffold for application in bone tissue regeneration.
    Torres AL; Gaspar VM; Serra IR; Diogo GS; Fradique R; Silva AP; Correia IJ
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4460-9. PubMed ID: 23910366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration.
    Chesnutt BM; Viano AM; Yuan Y; Yang Y; Guda T; Appleford MR; Ong JL; Haggard WO; Bumgardner JD
    J Biomed Mater Res A; 2009 Feb; 88(2):491-502. PubMed ID: 18306307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for load-bearing bone implants.
    Zhang Y; Zhang M
    J Biomed Mater Res; 2002 Jul; 61(1):1-8. PubMed ID: 12001239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction.
    Park HJ; Min KD; Lee MC; Kim SH; Lee OJ; Ju HW; Moon BM; Lee JM; Park YR; Kim DW; Jeong JY; Park CH
    J Biomed Mater Res A; 2016 Jul; 104(7):1779-87. PubMed ID: 26999521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)-bioglass/chitosan-collagen composite scaffolds: a bone tissue engineering applications.
    Pon-On W; Charoenphandhu N; Teerapornpuntakit J; Thongbunchoo J; Krishnamra N; Tang IM
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():63-72. PubMed ID: 24656353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New method for the fabrication of highly osteoconductive β-1,3-glucan/HA scaffold for bone tissue engineering: Structural, mechanical, and biological characterization.
    Klimek K; Przekora A; Pałka K; Ginalska G
    J Biomed Mater Res A; 2016 Oct; 104(10):2528-36. PubMed ID: 27239050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of gelatin based porous biocomposite for bone tissue engineering and evaluation of gamma irradiation effect on its properties.
    Islam MM; Khan MA; Rahman MM
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():648-655. PubMed ID: 25686994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perovskite ceramic nanoparticles in polymer composites for augmenting bone tissue regeneration.
    Bagchi A; Meka SR; Rao BN; Chatterjee K
    Nanotechnology; 2014 Dec; 25(48):485101. PubMed ID: 25379989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical, Structural, and Biological Properties of Chitosan/Hydroxyapatite/Silica Composites for Bone Tissue Engineering.
    Adamski R; Siuta D
    Molecules; 2021 Mar; 26(7):. PubMed ID: 33807434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].
    Lian Q; Zhuang P; Li C; Jin Z; Li D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and in vitro biological activity of βTCP-Chitosan-Fucoidan composite for bone tissue engineering.
    Puvaneswary S; Talebian S; Raghavendran HB; Murali MR; Mehrali M; Afifi AM; Kasim NH; Kamarul T
    Carbohydr Polym; 2015 Dec; 134():799-807. PubMed ID: 26428187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of novel functionalized multiwalled carbon nanotubes/chitosan/β-Glycerophosphate scaffolds for bone tissue engineering.
    Gholizadeh S; Moztarzadeh F; Haghighipour N; Ghazizadeh L; Baghbani F; Shokrgozar MA; Allahyari Z
    Int J Biol Macromol; 2017 Apr; 97():365-372. PubMed ID: 28064056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds.
    Roohani-Esfahani SI; Lu ZF; Li JJ; Ellis-Behnke R; Kaplan DL; Zreiqat H
    Acta Biomater; 2012 Jan; 8(1):302-12. PubMed ID: 22023750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Balancing mechanical strength with bioactivity in chitosan-calcium phosphate 3D microsphere scaffolds for bone tissue engineering: air- vs. freeze-drying processes.
    Nguyen DT; McCanless JD; Mecwan MM; Noblett AP; Haggard WO; Smith RA; Bumgardner JD
    J Biomater Sci Polym Ed; 2013; 24(9):1071-83. PubMed ID: 23683039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.