These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
759 related articles for article (PubMed ID: 24815684)
1. Chitosan/β-1,3-glucan/calcium phosphate ceramics composites--novel cell scaffolds for bone tissue engineering application. Przekora A; Palka K; Ginalska G J Biotechnol; 2014 Jul; 182-183():46-53. PubMed ID: 24815684 [TBL] [Abstract][Full Text] [Related]
2. Biomedical potential of chitosan/HA and chitosan/β-1,3-glucan/HA biomaterials as scaffolds for bone regeneration--A comparative study. Przekora A; Palka K; Ginalska G Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():891-9. PubMed ID: 26478384 [TBL] [Abstract][Full Text] [Related]
3. In vitro evaluation of biomimetic chitosan-calcium phosphate scaffolds with potential application in bone tissue engineering. Tanase CE; Sartoris A; Popa MI; Verestiuc L; Unger RE; Kirkpatrick CJ Biomed Mater; 2013 Apr; 8(2):025002. PubMed ID: 23343569 [TBL] [Abstract][Full Text] [Related]
4. Enhanced differentiation of osteoblastic cells on novel chitosan/β-1,3-glucan/bioceramic scaffolds for bone tissue regeneration. Przekora A; Ginalska G Biomed Mater; 2015 Jan; 10(1):015009. PubMed ID: 25586067 [TBL] [Abstract][Full Text] [Related]
5. Addition of 1,3-β-D-glucan to chitosan-based composites enhances osteoblast adhesion, growth, and proliferation. Przekora A; Ginalska G Int J Biol Macromol; 2014 Sep; 70():474-81. PubMed ID: 25064557 [TBL] [Abstract][Full Text] [Related]
6. In vitro assessment of three-dimensionally plotted nagelschmidtite bioceramic scaffolds with varied macropore morphologies. Xu M; Zhai D; Chang J; Wu C Acta Biomater; 2014 Jan; 10(1):463-76. PubMed ID: 24071000 [TBL] [Abstract][Full Text] [Related]
7. Bioactive polymeric-ceramic hybrid 3D scaffold for application in bone tissue regeneration. Torres AL; Gaspar VM; Serra IR; Diogo GS; Fradique R; Silva AP; Correia IJ Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4460-9. PubMed ID: 23910366 [TBL] [Abstract][Full Text] [Related]
8. Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration. Chesnutt BM; Viano AM; Yuan Y; Yang Y; Guda T; Appleford MR; Ong JL; Haggard WO; Bumgardner JD J Biomed Mater Res A; 2009 Feb; 88(2):491-502. PubMed ID: 18306307 [TBL] [Abstract][Full Text] [Related]
9. Three-dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for load-bearing bone implants. Zhang Y; Zhang M J Biomed Mater Res; 2002 Jul; 61(1):1-8. PubMed ID: 12001239 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction. Park HJ; Min KD; Lee MC; Kim SH; Lee OJ; Ju HW; Moon BM; Lee JM; Park YR; Kim DW; Jeong JY; Park CH J Biomed Mater Res A; 2016 Jul; 104(7):1779-87. PubMed ID: 26999521 [TBL] [Abstract][Full Text] [Related]
11. Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)-bioglass/chitosan-collagen composite scaffolds: a bone tissue engineering applications. Pon-On W; Charoenphandhu N; Teerapornpuntakit J; Thongbunchoo J; Krishnamra N; Tang IM Mater Sci Eng C Mater Biol Appl; 2014 May; 38():63-72. PubMed ID: 24656353 [TBL] [Abstract][Full Text] [Related]
12. New method for the fabrication of highly osteoconductive β-1,3-glucan/HA scaffold for bone tissue engineering: Structural, mechanical, and biological characterization. Klimek K; Przekora A; Pałka K; Ginalska G J Biomed Mater Res A; 2016 Oct; 104(10):2528-36. PubMed ID: 27239050 [TBL] [Abstract][Full Text] [Related]
13. Preparation of gelatin based porous biocomposite for bone tissue engineering and evaluation of gamma irradiation effect on its properties. Islam MM; Khan MA; Rahman MM Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():648-655. PubMed ID: 25686994 [TBL] [Abstract][Full Text] [Related]
14. Perovskite ceramic nanoparticles in polymer composites for augmenting bone tissue regeneration. Bagchi A; Meka SR; Rao BN; Chatterjee K Nanotechnology; 2014 Dec; 25(48):485101. PubMed ID: 25379989 [TBL] [Abstract][Full Text] [Related]
15. Mechanical, Structural, and Biological Properties of Chitosan/Hydroxyapatite/Silica Composites for Bone Tissue Engineering. Adamski R; Siuta D Molecules; 2021 Mar; 26(7):. PubMed ID: 33807434 [TBL] [Abstract][Full Text] [Related]
16. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique]. Lian Q; Zhuang P; Li C; Jin Z; Li D Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010 [TBL] [Abstract][Full Text] [Related]
17. Fabrication and in vitro biological activity of βTCP-Chitosan-Fucoidan composite for bone tissue engineering. Puvaneswary S; Talebian S; Raghavendran HB; Murali MR; Mehrali M; Afifi AM; Kasim NH; Kamarul T Carbohydr Polym; 2015 Dec; 134():799-807. PubMed ID: 26428187 [TBL] [Abstract][Full Text] [Related]
18. Preparation and characterization of novel functionalized multiwalled carbon nanotubes/chitosan/β-Glycerophosphate scaffolds for bone tissue engineering. Gholizadeh S; Moztarzadeh F; Haghighipour N; Ghazizadeh L; Baghbani F; Shokrgozar MA; Allahyari Z Int J Biol Macromol; 2017 Apr; 97():365-372. PubMed ID: 28064056 [TBL] [Abstract][Full Text] [Related]
19. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds. Roohani-Esfahani SI; Lu ZF; Li JJ; Ellis-Behnke R; Kaplan DL; Zreiqat H Acta Biomater; 2012 Jan; 8(1):302-12. PubMed ID: 22023750 [TBL] [Abstract][Full Text] [Related]
20. Balancing mechanical strength with bioactivity in chitosan-calcium phosphate 3D microsphere scaffolds for bone tissue engineering: air- vs. freeze-drying processes. Nguyen DT; McCanless JD; Mecwan MM; Noblett AP; Haggard WO; Smith RA; Bumgardner JD J Biomater Sci Polym Ed; 2013; 24(9):1071-83. PubMed ID: 23683039 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]