These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

757 related articles for article (PubMed ID: 24815684)

  • 81. 3D plotting in the preparation of newberyite, struvite, and brushite porous scaffolds: using magnesium oxide as a starting material.
    Cao X; Lu H; Liu J; Lu W; Guo L; Ma M; Zhang B; Guo Y
    J Mater Sci Mater Med; 2019 Jul; 30(8):88. PubMed ID: 31325082
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.
    Lu HH; El-Amin SF; Scott KD; Laurencin CT
    J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Chitosan-hydroxyapatite composites.
    Pighinelli L; Kucharska M
    Carbohydr Polym; 2013 Mar; 93(1):256-62. PubMed ID: 23465927
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Fabrication of individual alginate-TCP scaffolds for bone tissue engineering by means of powder printing.
    Castilho M; Rodrigues J; Pires I; Gouveia B; Pereira M; Moseke C; Groll J; Ewald A; Vorndran E
    Biofabrication; 2015 Jan; 7(1):015004. PubMed ID: 25562119
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Novel mechanically competent polysaccharide scaffolds for bone tissue engineering.
    Kumbar SG; Toti US; Deng M; James R; Laurencin CT; Aravamudhan A; Harmon M; Ramos DM
    Biomed Mater; 2011 Dec; 6(6):065005. PubMed ID: 22089383
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Morphology, mechanical characterization and in vivo neo-vascularization of chitosan particle aggregated scaffolds architectures.
    Malafaya PB; Santos TC; van Griensven M; Reis RL
    Biomaterials; 2008 Oct; 29(29):3914-26. PubMed ID: 18649938
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Fabrication of a three-dimensional β-tricalcium-phosphate/gelatin containing chitosan-based nanoparticles for sustained release of bone morphogenetic protein-2: Implication for bone tissue engineering.
    Bastami F; Paknejad Z; Jafari M; Salehi M; Rezai Rad M; Khojasteh A
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():481-491. PubMed ID: 28024612
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Fabrication and in-vitro biocompatibility of freeze-dried CTS-nHA and CTS-nBG scaffolds for bone regeneration applications.
    Kumar P; Saini M; Dehiya BS; Umar A; Sindhu A; Mohammed H; Al-Hadeethi Y; Guo Z
    Int J Biol Macromol; 2020 Apr; 149():1-10. PubMed ID: 31923516
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Collagen-gelatin-genipin-hydroxyapatite composite scaffolds colonized by human primary osteoblasts are suitable for bone tissue engineering applications: in vitro evidences.
    Vozzi G; Corallo C; Carta S; Fortina M; Gattazzo F; Galletti M; Giordano N
    J Biomed Mater Res A; 2014 May; 102(5):1415-21. PubMed ID: 23775901
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Hydroxyapatite-hybridized chitosan/chitin whisker bionanocomposite fibers for bone tissue engineering applications.
    Pangon A; Saesoo S; Saengkrit N; Ruktanonchai U; Intasanta V
    Carbohydr Polym; 2016 Jun; 144():419-27. PubMed ID: 27083834
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Preparation and mechanical property of a novel 3D porous magnesium scaffold for bone tissue engineering.
    Zhang X; Li XW; Li JG; Sun XD
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():362-7. PubMed ID: 25063129
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Fabrication and in vitro biocompatibility of biomorphic PLGA/nHA composite scaffolds for bone tissue engineering.
    Qian J; Xu W; Yong X; Jin X; Zhang W
    Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():95-101. PubMed ID: 24433891
    [TBL] [Abstract][Full Text] [Related]  

  • 93. In vitro and in vivo biocompatibility assessment of free radical scavenging nanocomposite scaffolds for bone tissue regeneration.
    Dulany K; Hepburn K; Goins A; Allen JB
    J Biomed Mater Res A; 2020 Feb; 108(2):301-315. PubMed ID: 31606924
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Porous TiNbZr alloy scaffolds for biomedical applications.
    Wang X; Li Y; Xiong J; Hodgson PD; Wen C
    Acta Biomater; 2009 Nov; 5(9):3616-24. PubMed ID: 19505597
    [TBL] [Abstract][Full Text] [Related]  

  • 95. In vitro cytocompatibility evaluation of chitosan/graphene oxide 3D scaffold composites designed for bone tissue engineering.
    Dinescu S; Ionita M; Pandele AM; Galateanu B; Iovu H; Ardelean A; Costache M; Hermenean A
    Biomed Mater Eng; 2014; 24(6):2249-56. PubMed ID: 25226924
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Chitosan composite three dimensional macrospheric scaffolds for bone tissue engineering.
    Vyas V; Kaur T; Thirugnanam A
    Int J Biol Macromol; 2017 Nov; 104(Pt B):1946-1954. PubMed ID: 28416396
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Synthesis of calcium phosphate-zirconia scaffold and human endometrial adult stem cells for bone tissue engineering.
    Alizadeh A; Moztarzadeh F; Ostad SN; Azami M; Geramizadeh B; Hatam G; Bizari D; Tavangar SM; Vasei M; Ai J
    Artif Cells Nanomed Biotechnol; 2016; 44(1):66-73. PubMed ID: 24810360
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Microstructure and biocompatibility of composite biomaterials fabricated from titanium and tricalcium phosphate by spark plasma sintering.
    Mondal D; Nguyen L; Oh IH; Lee BT
    J Biomed Mater Res A; 2013 May; 101(5):1489-501. PubMed ID: 23135893
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Construction and in vitro characterization of three-dimensional silk fibroinchitosan scaffolds.
    Tong S; Xu DP; Liu ZM; Wang XK
    Dent Mater J; 2015; 34(4):475-84. PubMed ID: 26235712
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Fast setting calcium phosphate-chitosan scaffold: mechanical properties and biocompatibility.
    Xu HH; Simon CG
    Biomaterials; 2005 Apr; 26(12):1337-48. PubMed ID: 15482821
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 38.