BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 24815788)

  • 1. Mechanism, reactivity, and selectivity in Rh(III)-catalyzed phosphoryl-directed oxidative C-H activation/cyclization: a DFT study.
    Liu LL; Wu Y; Wang T; Gao X; Zhu J; Zhao Y
    J Org Chem; 2014 Jun; 79(11):5074-81. PubMed ID: 24815788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rh-catalyzed (5+2) cycloadditions of 3-acyloxy-1,4-enynes and alkynes: computational study of mechanism, reactivity, and regioselectivity.
    Xu X; Liu P; Shu XZ; Tang W; Houk KN
    J Am Chem Soc; 2013 Jun; 135(25):9271-4. PubMed ID: 23725341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyridine N-Oxide vs Pyridine Substrates for Rh(III)-Catalyzed Oxidative C-H Bond Functionalization.
    Neufeldt SR; Jiménez-Osés G; Huckins JR; Thiel OR; Houk KN
    J Am Chem Soc; 2015 Aug; 137(31):9843-54. PubMed ID: 26197041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of spirocyclic enones by rhodium-catalyzed dearomatizing oxidative annulation of 2-alkenylphenols with alkynes and enynes.
    Kujawa S; Best D; Burns DJ; Lam HW
    Chemistry; 2014 Jul; 20(28):8599-602. PubMed ID: 24909937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhodium-catalyzed oxidative C-H activation/cyclization for the synthesis of phosphaisocoumarins and phosphorous 2-pyrones.
    Park Y; Seo J; Park S; Yoo EJ; Lee PH
    Chemistry; 2013 Nov; 19(48):16461-8. PubMed ID: 24123397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DFT Study on Photosensitizer-Free Visible-Light-Mediated Au-Catalyzed
    Liu Y; Yang Y; Zhu R; Liu C; Zhang D
    J Org Chem; 2019 Dec; 84(24):16171-16182. PubMed ID: 31774681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rh(III)-catalyzed intramolecular redox-neutral or oxidative cyclization of alkynes: short, efficient synthesis of 3,4-fused indole skeletons.
    Zhou B; Yang Y; Tang H; Du J; Feng H; Li Y
    Org Lett; 2014 Aug; 16(15):3900-3. PubMed ID: 25054410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and DFT Studies Explain Solvent Control of C-H Activation and Product Selectivity in the Rh(III)-Catalyzed Formation of Neutral and Cationic Heterocycles.
    Davies DL; Ellul CE; Macgregor SA; McMullin CL; Singh K
    J Am Chem Soc; 2015 Aug; 137(30):9659-69. PubMed ID: 26115418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhodium(III)-catalyzed cyclization-olefination of N-acetoxyl ketoimine-alkynes.
    Zhao P; Wang F; Han K; Li X
    Org Lett; 2012 Jul; 14(13):3400-3. PubMed ID: 22690947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism, Regio-, and Diastereoselectivity of Rh(III)-Catalyzed Cyclization Reactions of N-Arylnitrones with Alkynes: A Density Functional Theory Study.
    Li Y; Shan C; Yang YF; Shi F; Qi X; Houk KN; Lan Y
    J Phys Chem A; 2017 Jun; 121(23):4496-4504. PubMed ID: 28488866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhodium-catalyzed oxidative cycloaddition of benzamides and alkynes via C-H/N-H activation.
    Hyster TK; Rovis T
    J Am Chem Soc; 2010 Aug; 132(30):10565-9. PubMed ID: 20662529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of Rhodium-Catalyzed C-H Functionalization: Advances in Theoretical Investigation.
    Qi X; Li Y; Bai R; Lan Y
    Acc Chem Res; 2017 Nov; 50(11):2799-2808. PubMed ID: 29112396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rh(I)-catalyzed carbonylative cyclization reactions of alkynes with 2-bromophenylboronic acids leading to indenones.
    Harada Y; Nakanishi J; Fujihara H; Tobisu M; Fukumoto Y; Chatani N
    J Am Chem Soc; 2007 May; 129(17):5766-71. PubMed ID: 17417848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic insight into conjugated N-N bond cleavage by Rh(III)-catalyzed redox-neutral C-H activation of pyrazolones.
    Wu W; Liu Y; Bi S
    Org Biomol Chem; 2015 Aug; 13(30):8251-60. PubMed ID: 26138233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhodium(III)-catalyzed oxidative bicyclization of 4-arylbut-3-yn-1-amines with internal alkynes through C-H functionalization.
    Pi R; Zhou MB; Yang Y; Gao C; Song RJ; Li JH
    Chem Commun (Camb); 2015 Sep; 51(70):13550-3. PubMed ID: 26222901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Easy access to isoquinolines and tetrahydroquinolines from ketoximes and alkynes via rhodium-catalyzed C-H bond activation.
    Parthasarathy K; Cheng CH
    J Org Chem; 2009 Dec; 74(24):9359-64. PubMed ID: 19894732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Mechanistic Study of Redox-Neutral Rh(III)-Catalyzed C-H Activation Reactions of Arylnitrones with Alkynes: Role of Noncovalent Interactions in Controlling Selectivity.
    Xing YY; Liu JB; Tian YY; Sun CZ; Huang F; Chen DZ
    J Phys Chem A; 2016 Nov; 120(46):9151-9158. PubMed ID: 27802050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhodium(I)-catalyzed cycloisomerization of benzylallene-alkynes through C-H activation.
    Kawaguchi Y; Yasuda S; Kaneko A; Oura Y; Mukai C
    Angew Chem Int Ed Engl; 2014 Jul; 53(29):7608-12. PubMed ID: 24889108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhodium(III)-catalyzed direct selective C(5)-H oxidative annulations of 2-substituted imidazoles and alkynes by double C-H activation.
    Huang JR; Zhang QR; Qu CH; Sun XH; Dong L; Chen YC
    Org Lett; 2013 Apr; 15(8):1878-81. PubMed ID: 23537406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphoryl-related directing groups in rhodium(III) catalysis: a general strategy to diverse P-containing frameworks.
    Zhao D; Nimphius C; Lindale M; Glorius F
    Org Lett; 2013 Sep; 15(17):4504-7. PubMed ID: 23971502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.