BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 24815912)

  • 1. Metabolism of DNA secondary structures at the eukaryotic replication fork.
    León-Ortiz AM; Svendsen J; Boulton SJ
    DNA Repair (Amst); 2014 Jul; 19():152-62. PubMed ID: 24815912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precarious maintenance of simple DNA repeats in eukaryotes.
    Neil AJ; Kim JC; Mirkin SM
    Bioessays; 2017 Sep; 39(9):. PubMed ID: 28703879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The DNA fibre technique - tracking helicases at work.
    Nieminuszczy J; Schwab RA; Niedzwiedz W
    Methods; 2016 Oct; 108():92-8. PubMed ID: 27102626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interstitial telomere sequences disrupt break-induced replication and drive formation of ectopic telomeres.
    Stivison EA; Young KJ; Symington LS
    Nucleic Acids Res; 2020 Dec; 48(22):12697-12710. PubMed ID: 33264397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Restarted replication forks are error-prone and cause CAG repeat expansions and contractions.
    Gold MA; Whalen JM; Freon K; Hong Z; Iraqui I; Lambert SAE; Freudenreich CH
    PLoS Genet; 2021 Oct; 17(10):e1009863. PubMed ID: 34673780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overcoming natural replication barriers: differential helicase requirements.
    Anand RP; Shah KA; Niu H; Sung P; Mirkin SM; Freudenreich CH
    Nucleic Acids Res; 2012 Feb; 40(3):1091-105. PubMed ID: 21984413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RADX prevents genome instability by confining replication fork reversal to stalled forks.
    Krishnamoorthy A; Jackson J; Mohamed T; Adolph M; Vindigni A; Cortez D
    Mol Cell; 2021 Jul; 81(14):3007-3017.e5. PubMed ID: 34107305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The repair of G-quadruplex-induced DNA damage.
    van Kregten M; Tijsterman M
    Exp Cell Res; 2014 Nov; 329(1):178-83. PubMed ID: 25193076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. G-rich telomeric and ribosomal DNA sequences from the fission yeast genome form stable G-quadruplex DNA structures in vitro and are unwound by the Pfh1 DNA helicase.
    Wallgren M; Mohammad JB; Yan KP; Pourbozorgi-Langroudi P; Ebrahimi M; Sabouri N
    Nucleic Acids Res; 2016 Jul; 44(13):6213-31. PubMed ID: 27185885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Location, Location, Location: The Role of Nuclear Positioning in the Repair of Collapsed Forks and Protection of Genome Stability.
    Whalen JM; Freudenreich CH
    Genes (Basel); 2020 Jun; 11(6):. PubMed ID: 32526925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. G-Quadruplexes in DNA Replication: A Problem or a Necessity?
    Valton AL; Prioleau MN
    Trends Genet; 2016 Nov; 32(11):697-706. PubMed ID: 27663528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential requirement of Srs2 helicase and Rad51 displacement activities in replication of hairpin-forming CAG/CTG repeats.
    Nguyen JHG; Viterbo D; Anand RP; Verra L; Sloan L; Richard GF; Freudenreich CH
    Nucleic Acids Res; 2017 May; 45(8):4519-4531. PubMed ID: 28175398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two replication fork maintenance pathways fuse inverted repeats to rearrange chromosomes.
    Hu L; Kim TM; Son MY; Kim SA; Holland CL; Tateishi S; Kim DH; Yew PR; Montagna C; Dumitrache LC; Hasty P
    Nature; 2013 Sep; 501(7468):569-72. PubMed ID: 24013173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A telomerase-associated RecQ protein-like helicase resolves telomeric G-quadruplex structures during replication.
    Postberg J; Tsytlonok M; Sparvoli D; Rhodes D; Lipps HJ
    Gene; 2012 Apr; 497(2):147-54. PubMed ID: 22327026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA helicases as targets for anti-cancer drugs.
    Sharma S; Doherty KM; Brosh RM
    Curr Med Chem Anticancer Agents; 2005 May; 5(3):183-99. PubMed ID: 15992349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maintaining genome stability at the replication fork.
    Branzei D; Foiani M
    Nat Rev Mol Cell Biol; 2010 Mar; 11(3):208-19. PubMed ID: 20177396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Making Choices: DNA Replication Fork Recovery Mechanisms.
    Kondratick CM; Washington MT; Spies M
    Semin Cell Dev Biol; 2021 May; 113():27-37. PubMed ID: 33967572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide Control of Heterochromatin Replication by the Telomere Capping Protein TRF2.
    Mendez-Bermudez A; Lototska L; Bauwens S; Giraud-Panis MJ; Croce O; Jamet K; Irizar A; Mowinckel M; Koundrioukoff S; Nottet N; Almouzni G; Teulade-Fichou MP; Schertzer M; Perderiset M; Londoño-Vallejo A; Debatisse M; Gilson E; Ye J
    Mol Cell; 2018 May; 70(3):449-461.e5. PubMed ID: 29727617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Replicating through telomeres: a means to an end.
    Martínez P; Blasco MA
    Trends Biochem Sci; 2015 Sep; 40(9):504-15. PubMed ID: 26188776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pif1-Family Helicases Support Fork Convergence during DNA Replication Termination in Eukaryotes.
    Deegan TD; Baxter J; Ortiz Bazán MÁ; Yeeles JTP; Labib KPM
    Mol Cell; 2019 Apr; 74(2):231-244.e9. PubMed ID: 30850330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.