These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 24816566)
1. Separation-dependence evolution of inter-particle interaction in the oriented-attachment growth of nanorods: a case of hexagonal nanocrystals. Song Y; Liu A; Pan Y; Wang X; Hu J; Hou X; Lin X; He W Analyst; 2014 Jul; 139(13):3393-7. PubMed ID: 24816566 [TBL] [Abstract][Full Text] [Related]
2. An energy investigation into 1D/2D oriented-attachment assemblies of 1D Ag nanocrystals. Lv W; Yang X; Wang W; Niu Y; Liu Z; He W Chemphyschem; 2014 Sep; 15(13):2688-91. PubMed ID: 24954815 [TBL] [Abstract][Full Text] [Related]
3. Understanding the oriented-attachment growth of nanocrystals from an energy point of view: a review. Lv W; He W; Wang X; Niu Y; Cao H; Dickerson JH; Wang Z Nanoscale; 2014 Mar; 6(5):2531-47. PubMed ID: 24481078 [TBL] [Abstract][Full Text] [Related]
4. The evaluation of Coulombic interaction in the oriented-attachment growth of colloidal nanorods. He W; Lin J; Lin X; Lu N; Zhou M; Zhang KH Analyst; 2012 Nov; 137(21):4917-20. PubMed ID: 23008830 [TBL] [Abstract][Full Text] [Related]
5. An analytical expression for the van der Waals interaction in oriented-attachment growth: a spherical nanoparticle and a growing cylindrical nanorod. He W; Lin J; Wang B; Tuo S; Pantelides ST; Dickerson JH Phys Chem Chem Phys; 2012 Apr; 14(13):4548-53. PubMed ID: 22361953 [TBL] [Abstract][Full Text] [Related]
6. Effects of particle shape and surface roughness on van der Waals interactions and coupling to dynamics in nanocrystals. Lee J; Nakouzi E; Heo J; Legg BA; Schenter GK; Li D; Park C; Ma H; Chun J J Colloid Interface Sci; 2023 Dec; 652(Pt B):1974-1983. PubMed ID: 37690305 [TBL] [Abstract][Full Text] [Related]
7. Quantitative evaluation of Coulombic interactions in the oriented-attachment growth of nanotubes. Zhang Y; He W; Wen K; Wang X; Lu H; Lin X; Dickerson JH Analyst; 2014 Jan; 139(2):371-4. PubMed ID: 24255914 [TBL] [Abstract][Full Text] [Related]
8. Can oriented-attachment be an efficient growth mechanism for the synthesis of 1D nanocrystals via atomic layer deposition? Wen K; He W Nanotechnology; 2015 Sep; 26(38):382001. PubMed ID: 26334690 [TBL] [Abstract][Full Text] [Related]
9. Numerical simulations of sonochemical production and oriented aggregation of BaTiO Yasui K; Kato K Ultrason Sonochem; 2017 Mar; 35(Pt B):673-680. PubMed ID: 27180048 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism. Yu JH; Joo J; Park HM; Baik SI; Kim YW; Kim SC; Hyeon T J Am Chem Soc; 2005 Apr; 127(15):5662-70. PubMed ID: 15826206 [TBL] [Abstract][Full Text] [Related]
11. 2D-Oriented Attachment of 1D Colloidal Semiconductor Nanocrystals via an Etchant. Arora D; Tan HR; Wu WY; Chan Y Nano Lett; 2022 Feb; 22(3):942-947. PubMed ID: 35089050 [TBL] [Abstract][Full Text] [Related]
12. Size-dependent oriented attachment in the growth of pure and defect-free hexagonal boron nitride nanocrystals. Lin LX; Li ZH; Zheng Y; Ahmed AS Nanotechnology; 2011 May; 22(21):215603. PubMed ID: 21451232 [TBL] [Abstract][Full Text] [Related]
13. Synthesis, self-assembly, disassembly, and reassembly of two types of Cu2O nanocrystals unifaceted with {001} or {110} planes. Yao KX; Yin XM; Wang TH; Zeng HC J Am Chem Soc; 2010 May; 132(17):6131-44. PubMed ID: 20392039 [TBL] [Abstract][Full Text] [Related]
14. Impact of the colloidal state on the oriented attachment growth mechanism. Dalmaschio CJ; Ribeiro C; Leite ER Nanoscale; 2010 Nov; 2(11):2336-45. PubMed ID: 20835441 [TBL] [Abstract][Full Text] [Related]
15. Morphologic evolution of Au nanocrystals grown in ionic liquid by plasma reduction. Xie Y; Wei Z; Liu CJ; Cui L; Wang C J Colloid Interface Sci; 2012 May; 374(1):40-4. PubMed ID: 22369984 [TBL] [Abstract][Full Text] [Related]
16. Adhesion between a charged particle in an electrolyte solution and a charged substrate: Electrostatic and van der Waals interactions. Malysheva O; Tang T; Schiavone P J Colloid Interface Sci; 2008 Nov; 327(1):251-60. PubMed ID: 18768186 [TBL] [Abstract][Full Text] [Related]
17. Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals. Lalatonne Y; Richardi J; Pileni MP Nat Mater; 2004 Feb; 3(2):121-5. PubMed ID: 14730356 [TBL] [Abstract][Full Text] [Related]
18. Formation of monodisperse and shape-controlled MnO nanocrystals in non-injection synthesis: self-focusing via ripening. Chen Y; Johnson E; Peng X J Am Chem Soc; 2007 Sep; 129(35):10937-47. PubMed ID: 17696349 [TBL] [Abstract][Full Text] [Related]
19. Linear interaction energy models for beta-secretase (BACE) inhibitors: Role of van der Waals, electrostatic, and continuum-solvation terms. Tounge BA; Rajamani R; Baxter EW; Reitz AB; Reynolds CH J Mol Graph Model; 2006 May; 24(6):475-84. PubMed ID: 16293430 [TBL] [Abstract][Full Text] [Related]
20. Size effects in the oriented-attachment growth process: the case of Cu nanoseeds. Shen S; Zhuang J; Xu X; Nisar A; Hu S; Wang X Inorg Chem; 2009 Jun; 48(12):5117-28. PubMed ID: 19413306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]