These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 24816645)

  • 1. A random forest based risk model for reliable and accurate prediction of receipt of transfusion in patients undergoing percutaneous coronary intervention.
    Gurm HS; Kooiman J; LaLonde T; Grines C; Share D; Seth M
    PLoS One; 2014; 9(5):e96385. PubMed ID: 24816645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel tool for reliable and accurate prediction of renal complications in patients undergoing percutaneous coronary intervention.
    Gurm HS; Seth M; Kooiman J; Share D
    J Am Coll Cardiol; 2013 Jun; 61(22):2242-8. PubMed ID: 23721921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Merging machine learning and patient preference: a novel tool for risk prediction of percutaneous coronary interventions.
    Hamilton DE; Albright J; Seth M; Painter I; Maynard C; Hira RS; Sukul D; Gurm HS
    Eur Heart J; 2024 Feb; 45(8):601-609. PubMed ID: 38233027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and validation of a risk prediction nomogram for in-stent restenosis in patients undergoing percutaneous coronary intervention.
    He W; Xu C; Wang X; Lei J; Qiu Q; Hu Y; Luo D
    BMC Cardiovasc Disord; 2021 Sep; 21(1):435. PubMed ID: 34521385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Random forest for prediction of contrast-induced nephropathy following coronary angiography.
    Liu Y; Chen S; Ye J; Xian Y; Wang X; Xuan J; Tan N; Li Q; Chen J; Ni Z
    Int J Cardiovasc Imaging; 2020 Jun; 36(6):983-991. PubMed ID: 32285318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the prediction of acute kidney injury risk after percutaneous coronary intervention using machine learning techniques: A retrospective cohort study.
    Huang C; Murugiah K; Mahajan S; Li SX; Dhruva SS; Haimovich JS; Wang Y; Schulz WL; Testani JM; Wilson FP; Mena CI; Masoudi FA; Rumsfeld JS; Spertus JA; Mortazavi BJ; Krumholz HM
    PLoS Med; 2018 Nov; 15(11):e1002703. PubMed ID: 30481186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radial PCI and the obesity paradox: Insights from Blue Cross Blue Shield of Michigan Cardiovascular Consortium (BMC2).
    McDonagh JR; Seth M; LaLonde TA; Khandewal AK; Wohns DH; Dixon SR; Gurm HS
    Catheter Cardiovasc Interv; 2016 Feb; 87(2):211-9. PubMed ID: 26010906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leveraging Machine Learning Techniques to Forecast Patient Prognosis After Percutaneous Coronary Intervention.
    Zack CJ; Senecal C; Kinar Y; Metzger Y; Bar-Sinai Y; Widmer RJ; Lennon R; Singh M; Bell MR; Lerman A; Gulati R
    JACC Cardiovasc Interv; 2019 Jul; 12(14):1304-1311. PubMed ID: 31255564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A contemporary simple risk score for prediction of contrast-associated acute kidney injury after percutaneous coronary intervention: derivation and validation from an observational registry.
    Mehran R; Owen R; Chiarito M; Baber U; Sartori S; Cao D; Nicolas J; Pivato CA; Nardin M; Krishnan P; Kini A; Sharma S; Pocock S; Dangas G
    Lancet; 2021 Nov; 398(10315):1974-1983. PubMed ID: 34793743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vascular Access Site and Outcomes in 58,870 Patients Undergoing Percutaneous Coronary Intervention With a Previous History of Coronary Bypass Surgery: Results From the British Cardiovascular Interventions Society National Database.
    Kinnaird T; Anderson R; Gallagher S; Cockburn J; Sirker A; Ludman P; de Belder M; Copt S; Nolan J; Zaman A; Mamas M
    JACC Cardiovasc Interv; 2018 Mar; 11(5):482-492. PubMed ID: 29519382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Risk stratification model for in-hospital death in patients undergoing percutaneous coronary intervention: a nationwide retrospective cohort study in Japan.
    Inohara T; Kohsaka S; Yamaji K; Ishii H; Amano T; Uemura S; Kadota K; Kumamaru H; Miyata H; Nakamura M
    BMJ Open; 2019 May; 9(5):e026683. PubMed ID: 31122979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and Validation of a Model for Predicting the Risk of Acute Kidney Injury Associated With Contrast Volume Levels During Percutaneous Coronary Intervention.
    Huang C; Li SX; Mahajan S; Testani JM; Wilson FP; Mena CI; Masoudi FA; Rumsfeld JS; Spertus JA; Mortazavi BJ; Krumholz HM
    JAMA Netw Open; 2019 Nov; 2(11):e1916021. PubMed ID: 31755952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive Modeling for Blood Transfusion After Adult Spinal Deformity Surgery: A Tree-Based Machine Learning Approach.
    Durand WM; DePasse JM; Daniels AH
    Spine (Phila Pa 1976); 2018 Aug; 43(15):1058-1066. PubMed ID: 29215501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting In-Hospital Mortality in Patients Undergoing Percutaneous Coronary Intervention.
    Castro-Dominguez YS; Wang Y; Minges KE; McNamara RL; Spertus JA; Dehmer GJ; Messenger JC; Lavin K; Anderson C; Blankinship K; Mercado N; Clary JM; Osborne AD; Curtis JP; Cavender MA
    J Am Coll Cardiol; 2021 Jul; 78(3):216-229. PubMed ID: 33957239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patterns and outcomes of red blood cell transfusion in patients undergoing percutaneous coronary intervention.
    Sherwood MW; Wang Y; Curtis JP; Peterson ED; Rao SV
    JAMA; 2014 Feb; 311(8):836-43. PubMed ID: 24570247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The epidemiology and outcomes of percutaneous coronary intervention before high-risk noncardiac surgery in contemporary practice: insights from the Blue Cross Blue Shield of Michigan Cardiovascular Consortium (BMC2) Registry.
    Muthappan P; Smith D; Aronow HD; Eagle K; Wohns D; Fox J; Share D; Gurm HS
    J Am Heart Assoc; 2014 May; 3(3):e000388. PubMed ID: 24820654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Establishment and validation of a risk model for prediction of in-hospital mortality in patients with acute ST-elevation myocardial infarction after primary PCI.
    Gao N; Qi X; Dang Y; Li Y; Wang G; Liu X; Zhu N; Fu J
    BMC Cardiovasc Disord; 2020 Dec; 20(1):513. PubMed ID: 33297955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adjustment of the GRACE score by HemoglobinA1c enables a more accurate prediction of long-term major adverse cardiac events in acute coronary syndrome without diabetes undergoing percutaneous coronary intervention.
    Liu XJ; Wan ZF; Zhao N; Zhang YP; Mi L; Wang XH; Zhou D; Wu Y; Yuan ZY
    Cardiovasc Diabetol; 2015 Aug; 14():110. PubMed ID: 26285575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Machine Learning Methods With National Cardiovascular Data Registry Models for Prediction of Risk of Bleeding After Percutaneous Coronary Intervention.
    Mortazavi BJ; Bucholz EM; Desai NR; Huang C; Curtis JP; Masoudi FA; Shaw RE; Negahban SN; Krumholz HM
    JAMA Netw Open; 2019 Jul; 2(7):e196835. PubMed ID: 31290991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative Outcomes After Percutaneous Coronary Intervention Among Black and White Patients Treated at US Veterans Affairs Hospitals.
    Kobayashi T; Glorioso TJ; Armstrong EJ; Maddox TM; Plomondon ME; Grunwald GK; Bradley SM; Tsai TT; Waldo SW; Rao SV; Banerjee S; Nallamothu BK; Bhatt DL; Rene AG; Wilensky RL; Groeneveld PW; Giri J
    JAMA Cardiol; 2017 Sep; 2(9):967-975. PubMed ID: 28724126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.