These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 24816692)

  • 1. Population-level impact of shorter-course regimens for tuberculosis: a model-based analysis.
    Fofana MO; Knight GM; Gomez GB; White RG; Dowdy DW
    PLoS One; 2014; 9(5):e96389. PubMed ID: 24816692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Priority-Setting for Novel Drug Regimens to Treat Tuberculosis: An Epidemiologic Model.
    Kendall EA; Shrestha S; Cohen T; Nuermberger E; Dooley KE; Gonzalez-Angulo L; Churchyard GJ; Nahid P; Rich ML; Bansbach C; Forissier T; Lienhardt C; Dowdy DW
    PLoS Med; 2017 Jan; 14(1):e1002202. PubMed ID: 28045934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shortened treatment regimens versus the standard regimen for drug-sensitive pulmonary tuberculosis.
    Grace AG; Mittal A; Jain S; Tripathy JP; Satyanarayana S; Tharyan P; Kirubakaran R
    Cochrane Database Syst Rev; 2019 Dec; 12(12):CD012918. PubMed ID: 31828771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Six-month therapy for abdominal tuberculosis.
    Jullien S; Jain S; Ryan H; Ahuja V
    Cochrane Database Syst Rev; 2016 Nov; 11(11):CD012163. PubMed ID: 27801499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prospects for advancing tuberculosis control efforts through novel therapies.
    Salomon JA; Lloyd-Smith JO; Getz WM; Resch S; Sánchez MS; Porco TC; Borgdorff MW
    PLoS Med; 2006 Aug; 3(8):e273. PubMed ID: 16866578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intermittent versus daily therapy for treating tuberculosis in children.
    Bose A; Kalita S; Rose W; Tharyan P
    Cochrane Database Syst Rev; 2014 Jan; 2014(1):CD007953. PubMed ID: 24470141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shorter antibiotic regimens impact the control efforts in high tuberculosis burden regions of Taiwan.
    Lin YJ; Lin HC; Yang YF; Chen CY; Lu TH; Liao CM
    Int J Infect Dis; 2020 Aug; 97():135-142. PubMed ID: 32474203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling the effect of short-course multidrug-resistant tuberculosis treatment in Karakalpakstan, Uzbekistan.
    Trauer JM; Achar J; Parpieva N; Khamraev A; Denholm JT; Falzon D; Jaramillo E; Mesic A; du Cros P; McBryde ES
    BMC Med; 2016 Nov; 14(1):187. PubMed ID: 27855693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating the impact of a novel drug regimen for treatment of tuberculosis: a modeling analysis of projected patient outcomes and epidemiological considerations.
    Kendall EA; Malhotra S; Cook-Scalise S; Denkinger CM; Dowdy DW
    BMC Infect Dis; 2019 Sep; 19(1):794. PubMed ID: 31500572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rifamycins (rifampicin, rifabutin and rifapentine) compared to isoniazid for preventing tuberculosis in HIV-negative people at risk of active TB.
    Sharma SK; Sharma A; Kadhiravan T; Tharyan P
    Cochrane Database Syst Rev; 2013 Jul; 2013(7):CD007545. PubMed ID: 23828580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cost-effectiveness of novel first-line treatment regimens for tuberculosis.
    Owens JP; Fofana MO; Dowdy DW
    Int J Tuberc Lung Dis; 2013 May; 17(5):590-6. PubMed ID: 23575322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial intelligence enabled parabolic response surface platform identifies ultra-rapid near-universal TB drug treatment regimens comprising approved drugs.
    Clemens DL; Lee BY; Silva A; Dillon BJ; Masleša-Galić S; Nava S; Ding X; Ho CM; Horwitz MA
    PLoS One; 2019; 14(5):e0215607. PubMed ID: 31075149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rifamycins (rifampicin, rifabutin and rifapentine) compared to isoniazid for preventing tuberculosis in HIV-negative people at risk of active TB.
    Sharma SK; Sharma A; Kadhiravan T; Tharyan P
    Evid Based Child Health; 2014 Mar; 9(1):169-294. PubMed ID: 25404581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shortened Treatment Regimens for Drug Sensitive TB.
    Singhal KK; Shinde M
    Indian J Pediatr; 2024 Jul; 91(7):724-729. PubMed ID: 38100071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cost comparison of nine-month treatment regimens with 20-month standardized care for the treatment of rifampicin-resistant/multi-drug resistant tuberculosis in Nigeria.
    Bada FO; Blok N; Okpokoro E; Dutt S; Akolo C; Dakum P; Abimiku A
    PLoS One; 2020; 15(12):e0241065. PubMed ID: 33259492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The point of view of a high prevalence country: Malawi.
    Nyangulu DS
    Bull Int Union Tuberc Lung Dis; 1991 Dec; 66(4):173-4. PubMed ID: 1687509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuberculosis preventive therapy for people living with HIV: A systematic review and network meta-analysis.
    Yanes-Lane M; Ortiz-Brizuela E; Campbell JR; Benedetti A; Churchyard G; Oxlade O; Menzies D
    PLoS Med; 2021 Sep; 18(9):e1003738. PubMed ID: 34520459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expected effects of adopting a 9 month regimen for multidrug-resistant tuberculosis: a population modelling analysis.
    Kendall EA; Fojo AT; Dowdy DW
    Lancet Respir Med; 2017 Mar; 5(3):191-199. PubMed ID: 27989591
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.