These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 24816694)

  • 1. Impact of Cr3+ pollution on microbial characteristics in purple paddy soil.
    Liu J; Zhang YQ; Zhang LM; Zhou XB; Shi XJ
    Pak J Pharm Sci; 2014 May; 27(3 Suppl):625-31. PubMed ID: 24816694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial characteristics of purple paddy soil in response to Pb pollution.
    Jiang QJ; Zhang YQ; Zhang LM; Zhou XB; Shi XJ
    Pak J Pharm Sci; 2014 May; 27(3 Suppl):643-8. PubMed ID: 24816695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effects of pesticide-contamination on population size and denitrification activity of denitrifying bacteria in paddy soils].
    Chen Z; Min H; Wu W; Chen M; Zhang F; Zhao B
    Ying Yong Sheng Tai Xue Bao; 2003 Oct; 14(10):1765-9. PubMed ID: 14986384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response of soil catalase activity to chromium contamination.
    Stepniewska Z; Wolińska A; Ziomek J
    J Environ Sci (China); 2009; 21(8):1142-7. PubMed ID: 19862930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Increasing Concentrations of Chromium on Soil Enzymatic Activities and Soil Respiration.
    Quazi M; Aery NC
    J Environ Sci Eng; 2014 Jul; 56(3):309-14. PubMed ID: 26563082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microcalorimetric study the toxic effect of hexavalent chromium on microbial activity of Wuhan brown sandy soil: an in vitro approach.
    Yao J; Tian L; Wang Y; Djah A; Wang F; Chen H; Su C; Zhuang R; Zhou Y; Choi MM; Bramanti E
    Ecotoxicol Environ Saf; 2008 Feb; 69(2):289-95. PubMed ID: 17418893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in enzymes activity, substrate utilization pattern and diversity of soil microbial communities under cadmium pollution.
    Muhammad A; Wang HZ; Wu JJ; Xu JM; Xu DF
    J Environ Sci (China); 2005; 17(5):802-7. PubMed ID: 16313007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the pollution risk of soil Chromium based on loading capacity of paddy soil at a regional scale.
    Qu M; Li W; Zhang C; Huang B; Zhao Y
    Sci Rep; 2015 Dec; 5():18451. PubMed ID: 26675587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of river overflowing on trace element contamination of volcanic soils in south Italy: part II. Soil biological and biochemical properties in relation to trace element speciation.
    D'Ascoli R; Rao MA; Adamo P; Renella G; Landi L; Rutigliano FA; Terribile F; Gianfreda L
    Environ Pollut; 2006 Nov; 144(1):317-26. PubMed ID: 16406624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of butachlor on microbial populations and enzyme activities in paddy soil.
    Min H; Ye YF; Chen ZY; Wu WX; Yufeng D
    J Environ Sci Health B; 2001 Sep; 36(5):581-95. PubMed ID: 11599722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of antimony on the microbial growth and the activities of soil enzymes.
    An YJ; Kim M
    Chemosphere; 2009 Feb; 74(5):654-9. PubMed ID: 19036401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effects of Hg contamination on paddy soil microbial and enzymatic activities].
    Jing YD; He ZL; Yang XE
    Ying Yong Sheng Tai Xue Bao; 2009 Jan; 20(1):218-22. PubMed ID: 19449589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of heavy metal Cd pollution on microbial activities in soil.
    Shi W; Ma X
    Ann Agric Environ Med; 2017 Dec; 24(4):722-725. PubMed ID: 29284254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter.
    Wang Y; Shi J; Wang H; Lin Q; Chen X; Chen Y
    Ecotoxicol Environ Saf; 2007 May; 67(1):75-81. PubMed ID: 16828162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response of soil enzymes, functional bacterial groups, and microbial communities exposed to sudan I-IV.
    Teng Y; Zhou Q
    Ecotoxicol Environ Saf; 2018 Dec; 166():328-335. PubMed ID: 30278394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial activity related to N cycling in the rhizosphere of maize stressed by heavy metals.
    Yang Y; Chen YX; Tian GM; Zhang ZJ
    J Environ Sci (China); 2005; 17(3):448-51. PubMed ID: 16083122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review.
    Dhal B; Thatoi HN; Das NN; Pandey BD
    J Hazard Mater; 2013 Apr; 250-251():272-91. PubMed ID: 23467183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A review on the environmental behaviors and toxicity assessment of chromium in soil-plant systems].
    Dai Y; Yang ZF; Zheng YM
    Huan Jing Ke Xue; 2009 Nov; 30(11):3432-40. PubMed ID: 20063767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The exposition of a calcareous Mediterranean soil to toxic concentrations of Cr, Cd and Pb produces changes in the microbiota mainly related to differential metal bioavailability.
    Caliz J; Montserrat G; Martí E; Sierra J; Cruañas R; Garau MA; Triadó-Margarit X; Vila X
    Chemosphere; 2012 Oct; 89(5):494-504. PubMed ID: 22658943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pretreatment of Cr(VI)-amended soil with chromate-reducing rhizobacteria decreases plant toxicity and increases the yield of Pisum sativum.
    Soni SK; Singh R; Singh M; Awasthi A; Wasnik K; Kalra A
    Arch Environ Contam Toxicol; 2014 May; 66(4):616-27. PubMed ID: 24535090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.